Purdue University

  • Ask a Librarian

Research: Overview & Approaches

  • Getting Started with Undergraduate Research
  • Planning & Getting Started
  • Building Your Knowledge Base
  • Locating Sources
  • Reading Scholarly Articles
  • Creating a Literature Review
  • Productivity & Organizing Research
  • Scholarly and Professional Relationships

Introduction to Empirical Research

Databases for finding empirical research, guided search, google scholar, examples of empirical research, sources and further reading.

  • Interpretive Research
  • Action-Based Research
  • Creative & Experimental Approaches

Your Librarian

Profile Photo

  • Introductory Video This video covers what empirical research is, what kinds of questions and methods empirical researchers use, and some tips for finding empirical research articles in your discipline.

Video Tutorial

  • Guided Search: Finding Empirical Research Articles This is a hands-on tutorial that will allow you to use your own search terms to find resources.

Google Scholar Search

  • Study on radiation transfer in human skin for cosmetics
  • Long-Term Mobile Phone Use and the Risk of Vestibular Schwannoma: A Danish Nationwide Cohort Study
  • Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services
  • Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles
  • Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?

research paper on empirical

  • << Previous: Scholarly and Professional Relationships
  • Next: Interpretive Research >>
  • Last Updated: Aug 8, 2024 2:05 PM
  • URL: https://guides.lib.purdue.edu/research_approaches

Penn State University Libraries

Empirical research in the social sciences and education.

  • What is Empirical Research and How to Read It
  • Finding Empirical Research in Library Databases
  • Designing Empirical Research
  • Ethics, Cultural Responsiveness, and Anti-Racism in Research
  • Citing, Writing, and Presenting Your Work

Contact the Librarian at your campus for more help!

Ellysa Cahoy

Introduction: What is Empirical Research?

Empirical research is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. 

How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."  Ask yourself: Could I recreate this study and test these results?

Key characteristics to look for:

  • Specific research questions to be answered
  • Definition of the population, behavior, or   phenomena being studied
  • Description of the process used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys)

Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components:

  • Introduction : sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous studies
  • Methodology: sometimes called "research design" -- how to recreate the study -- usually describes the population, research process, and analytical tools used in the present study
  • Results : sometimes called "findings" -- what was learned through the study -- usually appears as statistical data or as substantial quotations from research participants
  • Discussion : sometimes called "conclusion" or "implications" -- why the study is important -- usually describes how the research results influence professional practices or future studies

Reading and Evaluating Scholarly Materials

Reading research can be a challenge. However, the tutorials and videos below can help. They explain what scholarly articles look like, how to read them, and how to evaluate them:

  • CRAAP Checklist A frequently-used checklist that helps you examine the currency, relevance, authority, accuracy, and purpose of an information source.
  • IF I APPLY A newer model of evaluating sources which encourages you to think about your own biases as a reader, as well as concerns about the item you are reading.
  • Credo Video: How to Read Scholarly Materials (4 min.)
  • Credo Tutorial: How to Read Scholarly Materials
  • Credo Tutorial: Evaluating Information
  • Credo Video: Evaluating Statistics (4 min.)
  • Credo Tutorial: Evaluating for Diverse Points of View
  • Next: Finding Empirical Research in Library Databases >>
  • Last Updated: Aug 8, 2024 4:49 PM
  • URL: https://guides.libraries.psu.edu/emp

research paper on empirical

Empirical Research: A Comprehensive Guide for Academics 

empirical research

Empirical research relies on gathering and studying real, observable data. The term ’empirical’ comes from the Greek word ’empeirikos,’ meaning ‘experienced’ or ‘based on experience.’ So, what is empirical research? Instead of using theories or opinions, empirical research depends on real data obtained through direct observation or experimentation. 

Why Empirical Research?

Empirical research plays a key role in checking or improving current theories, providing a systematic way to grow knowledge across different areas. By focusing on objectivity, it makes research findings more trustworthy, which is critical in research fields like medicine, psychology, economics, and public policy. In the end, the strengths of empirical research lie in deepening our awareness of the world and improving our capacity to tackle problems wisely. 1,2  

Qualitative and Quantitative Methods

There are two main types of empirical research methods – qualitative and quantitative. 3,4 Qualitative research delves into intricate phenomena using non-numerical data, such as interviews or observations, to offer in-depth insights into human experiences. In contrast, quantitative research analyzes numerical data to spot patterns and relationships, aiming for objectivity and the ability to apply findings to a wider context. 

Steps for Conducting Empirical Research

When it comes to conducting research, there are some simple steps that researchers can follow. 5,6  

  • Create Research Hypothesis:  Clearly state the specific question you want to answer or the hypothesis you want to explore in your study. 
  • Examine Existing Research:  Read and study existing research on your topic. Understand what’s already known, identify existing gaps in knowledge, and create a framework for your own study based on what you learn. 
  • Plan Your Study:  Decide how you’ll conduct your research—whether through qualitative methods, quantitative methods, or a mix of both. Choose suitable techniques like surveys, experiments, interviews, or observations based on your research question. 
  • Develop Research Instruments:  Create reliable research collection tools, such as surveys or questionnaires, to help you collate data. Ensure these tools are well-designed and effective. 
  • Collect Data:  Systematically gather the information you need for your research according to your study design and protocols using the chosen research methods. 
  • Data Analysis:  Analyze the collected data using suitable statistical or qualitative methods that align with your research question and objectives. 
  • Interpret Results:  Understand and explain the significance of your analysis results in the context of your research question or hypothesis. 
  • Draw Conclusions:  Summarize your findings and draw conclusions based on the evidence. Acknowledge any study limitations and propose areas for future research. 

Advantages of Empirical Research

Empirical research is valuable because it stays objective by relying on observable data, lessening the impact of personal biases. This objectivity boosts the trustworthiness of research findings. Also, using precise quantitative methods helps in accurate measurement and statistical analysis. This precision ensures researchers can draw reliable conclusions from numerical data, strengthening our understanding of the studied phenomena. 4  

Disadvantages of Empirical Research

While empirical research has notable strengths, researchers must also be aware of its limitations when deciding on the right research method for their study.4 One significant drawback of empirical research is the risk of oversimplifying complex phenomena, especially when relying solely on quantitative methods. These methods may struggle to capture the richness and nuances present in certain social, cultural, or psychological contexts. Another challenge is the potential for confounding variables or biases during data collection, impacting result accuracy.  

Tips for Empirical Writing

In empirical research, the writing is usually done in research papers, articles, or reports. The empirical writing follows a set structure, and each section has a specific role. Here are some tips for your empirical writing. 7   

  • Define Your Objectives:  When you write about your research, start by making your goals clear. Explain what you want to find out or prove in a simple and direct way. This helps guide your research and lets others know what you have set out to achieve. 
  • Be Specific in Your Literature Review:  In the part where you talk about what others have studied before you, focus on research that directly relates to your research question. Keep it short and pick studies that help explain why your research is important. This part sets the stage for your work. 
  • Explain Your Methods Clearly : When you talk about how you did your research (Methods), explain it in detail. Be clear about your research plan, who took part, and what you did; this helps others understand and trust your study. Also, be honest about any rules you follow to make sure your study is ethical and reproducible. 
  • Share Your Results Clearly : After doing your empirical research, share what you found in a simple way. Use tables or graphs to make it easier for your audience to understand your research. Also, talk about any numbers you found and clearly state if they are important or not. Ensure that others can see why your research findings matter. 
  • Talk About What Your Findings Mean:  In the part where you discuss your research results, explain what they mean. Discuss why your findings are important and if they connect to what others have found before. Be honest about any problems with your study and suggest ideas for more research in the future. 
  • Wrap It Up Clearly:  Finally, end your empirical research paper by summarizing what you found and why it’s important. Remind everyone why your study matters. Keep your writing clear and fix any mistakes before you share it. Ask someone you trust to read it and give you feedback before you finish. 

References:  

  • Empirical Research in the Social Sciences and Education, Penn State University Libraries. Available online at  https://guides.libraries.psu.edu/emp  
  • How to conduct empirical research, Emerald Publishing. Available online at  https://www.emeraldgrouppublishing.com/how-to/research-methods/conduct-empirical-research  
  • Empirical Research: Quantitative & Qualitative, Arrendale Library, Piedmont University. Available online at  https://library.piedmont.edu/empirical-research  
  • Bouchrika, I.  What Is Empirical Research? Definition, Types & Samples  in 2024. Research.com, January 2024. Available online at  https://research.com/research/what-is-empirical-research  
  • Quantitative and Empirical Research vs. Other Types of Research. California State University, April 2023. Available online at  https://libguides.csusb.edu/quantitative  
  • Empirical Research, Definitions, Methods, Types and Examples, Studocu.com website. Available online at  https://www.studocu.com/row/document/uganda-christian-university/it-research-methods/emperical-research-definitions-methods-types-and-examples/55333816  
  • Writing an Empirical Paper in APA Style. Psychology Writing Center, University of Washington. Available online at  https://psych.uw.edu/storage/writing_center/APApaper.pdf  

Paperpal is an AI writing assistant that help academics write better, faster with real-time suggestions for in-depth language and grammar correction. Trained on millions of research manuscripts enhanced by professional academic editors, Paperpal delivers human precision at machine speed.  

Try it for free or upgrade to  Paperpal Prime , which unlocks unlimited access to premium features like academic translation, paraphrasing, contextual synonyms, consistency checks and more. It’s like always having a professional academic editor by your side! Go beyond limitations and experience the future of academic writing.  Get Paperpal Prime now at just US$19 a month!  

Related Reads:

  • How to Write a Scientific Paper in 10 Steps 
  • What is a Literature Review? How to Write It (with Examples)
  • What is an Argumentative Essay? How to Write It (With Examples)
  • Ethical Research Practices For Research with Human Subjects

Ethics in Science: Importance, Principles & Guidelines 

Presenting research data effectively through tables and figures, you may also like, the ai revolution: authors’ role in upholding academic..., the future of academia: how ai tools are..., how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), five things authors need to know when using..., 7 best referencing tools and citation management software..., maintaining academic integrity with paperpal’s generative ai writing....

Library Homepage

Identifying Empirical Research Articles

Identifying empirical articles.

  • Searching for Empirical Research Articles

What is Empirical Research?

An empirical research article reports the results of a study that uses data derived from actual observation or experimentation. Empirical research articles are examples of primary research. To learn more about the differences between primary and secondary research, see our related guide:

  • Primary and Secondary Sources

By the end of this guide, you will be able to:

  • Identify common elements of an empirical article
  • Use a variety of search strategies to search for empirical articles within the library collection

Look for the  IMRaD  layout in the article to help identify empirical research. Sometimes the sections will be labeled differently, but the content will be similar. 

  • I ntroduction: why the article was written, research question or questions, hypothesis, literature review
  • M ethods: the overall research design and implementation, description of sample, instruments used, how the authors measured their experiment
  • R esults: output of the author's measurements, usually includes statistics of the author's findings
  • D iscussion: the author's interpretation and conclusions about the results, limitations of study, suggestions for further research

Parts of an Empirical Research Article

Parts of an empirical article.

The screenshots below identify the basic IMRaD structure of an empirical research article. 

Introduction

The introduction contains a literature review and the study's research hypothesis.

research paper on empirical

The method section outlines the research design, participants, and measures used.

research paper on empirical

Results 

The results section contains statistical data (charts, graphs, tables, etc.) and research participant quotes.

research paper on empirical

The discussion section includes impacts, limitations, future considerations, and research.

research paper on empirical

Learn the IMRaD Layout: How to Identify an Empirical Article

This short video overviews the IMRaD method for identifying empirical research.

  • Next: Searching for Empirical Research Articles >>
  • Last Updated: Nov 16, 2023 8:24 AM

CityU Home - CityU Catalog

Creative Commons License

Banner

  • University of Memphis Libraries
  • Research Guides

Empirical Research: Defining, Identifying, & Finding

Defining empirical research, what is empirical research, quantitative or qualitative.

  • Introduction
  • Database Tools
  • Search Terms
  • Image Descriptions

Calfee & Chambliss (2005)  (UofM login required) describe empirical research as a "systematic approach for answering certain types of questions."  Those questions are answered "[t]hrough the collection of evidence under carefully defined and replicable conditions" (p. 43). 

The evidence collected during empirical research is often referred to as "data." 

Characteristics of Empirical Research

Emerald Publishing's guide to conducting empirical research identifies a number of common elements to empirical research: 

  • A  research question , which will determine research objectives.
  • A particular and planned  design  for the research, which will depend on the question and which will find ways of answering it with appropriate use of resources.
  • The gathering of  primary data , which is then analysed.
  • A particular  methodology  for collecting and analysing the data, such as an experiment or survey.
  • The limitation of the data to a particular group, area or time scale, known as a sample [emphasis added]: for example, a specific number of employees of a particular company type, or all users of a library over a given time scale. The sample should be somehow representative of a wider population.
  • The ability to  recreate  the study and test the results. This is known as  reliability .
  • The ability to  generalize  from the findings to a larger sample and to other situations.

If you see these elements in a research article, you can feel confident that you have found empirical research. Emerald's guide goes into more detail on each element. 

Empirical research methodologies can be described as quantitative, qualitative, or a mix of both (usually called mixed-methods).

Ruane (2016)  (UofM login required) gets at the basic differences in approach between quantitative and qualitative research:

  • Quantitative research  -- an approach to documenting reality that relies heavily on numbers both for the measurement of variables and for data analysis (p. 33).
  • Qualitative research  -- an approach to documenting reality that relies on words and images as the primary data source (p. 33).

Both quantitative and qualitative methods are empirical . If you can recognize that a research study is quantitative or qualitative study, then you have also recognized that it is empirical study. 

Below are information on the characteristics of quantitative and qualitative research. This video from Scribbr also offers a good overall introduction to the two approaches to research methodology: 

Characteristics of Quantitative Research 

Researchers test hypotheses, or theories, based in assumptions about causality, i.e. we expect variable X to cause variable Y. Variables have to be controlled as much as possible to ensure validity. The results explain the relationship between the variables. Measures are based in pre-defined instruments.

Examples: experimental or quasi-experimental design, pretest & post-test, survey or questionnaire with closed-ended questions. Studies that identify factors that influence an outcomes, the utility of an intervention, or understanding predictors of outcomes. 

Characteristics of Qualitative Research

Researchers explore “meaning individuals or groups ascribe to social or human problems (Creswell & Creswell, 2018, p3).” Questions and procedures emerge rather than being prescribed. Complexity, nuance, and individual meaning are valued. Research is both inductive and deductive. Data sources are multiple and varied, i.e. interviews, observations, documents, photographs, etc. The researcher is a key instrument and must be reflective of their background, culture, and experiences as influential of the research.

Examples: open question interviews and surveys, focus groups, case studies, grounded theory, ethnography, discourse analysis, narrative, phenomenology, participatory action research.

Calfee, R. C. & Chambliss, M. (2005). The design of empirical research. In J. Flood, D. Lapp, J. R. Squire, & J. Jensen (Eds.),  Methods of research on teaching the English language arts: The methodology chapters from the handbook of research on teaching the English language arts (pp. 43-78). Routledge.  http://ezproxy.memphis.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=125955&site=eds-live&scope=site .

Creswell, J. W., & Creswell, J. D. (2018).  Research design: Qualitative, quantitative, and mixed methods approaches  (5th ed.). Thousand Oaks: Sage.

How to... conduct empirical research . (n.d.). Emerald Publishing.  https://www.emeraldgrouppublishing.com/how-to/research-methods/conduct-empirical-research .

Scribbr. (2019). Quantitative vs. qualitative: The differences explained  [video]. YouTube.  https://www.youtube.com/watch?v=a-XtVF7Bofg .

Ruane, J. M. (2016).  Introducing social research methods : Essentials for getting the edge . Wiley-Blackwell.  http://ezproxy.memphis.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1107215&site=eds-live&scope=site .  

  • << Previous: Home
  • Next: Identifying Empirical Research >>
  • Last Updated: Apr 2, 2024 11:25 AM
  • URL: https://libguides.memphis.edu/empirical-research
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research paper on empirical

Home Market Research

Empirical Research: Definition, Methods, Types and Examples

What is Empirical Research

Content Index

Empirical research: Definition

Empirical research: origin, quantitative research methods, qualitative research methods, steps for conducting empirical research, empirical research methodology cycle, advantages of empirical research, disadvantages of empirical research, why is there a need for empirical research.

Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore “verifiable” evidence.

This empirical evidence can be gathered using quantitative market research and  qualitative market research  methods.

For example: A research is being conducted to find out if listening to happy music in the workplace while working may promote creativity? An experiment is conducted by using a music website survey on a set of audience who are exposed to happy music and another set who are not listening to music at all, and the subjects are then observed. The results derived from such a research will give empirical evidence if it does promote creativity or not.

LEARN ABOUT: Behavioral Research

You must have heard the quote” I will not believe it unless I see it”. This came from the ancient empiricists, a fundamental understanding that powered the emergence of medieval science during the renaissance period and laid the foundation of modern science, as we know it today. The word itself has its roots in greek. It is derived from the greek word empeirikos which means “experienced”.

In today’s world, the word empirical refers to collection of data using evidence that is collected through observation or experience or by using calibrated scientific instruments. All of the above origins have one thing in common which is dependence of observation and experiments to collect data and test them to come up with conclusions.

LEARN ABOUT: Causal Research

Types and methodologies of empirical research

Empirical research can be conducted and analysed using qualitative or quantitative methods.

  • Quantitative research : Quantitative research methods are used to gather information through numerical data. It is used to quantify opinions, behaviors or other defined variables . These are predetermined and are in a more structured format. Some of the commonly used methods are survey, longitudinal studies, polls, etc
  • Qualitative research:   Qualitative research methods are used to gather non numerical data.  It is used to find meanings, opinions, or the underlying reasons from its subjects. These methods are unstructured or semi structured. The sample size for such a research is usually small and it is a conversational type of method to provide more insight or in-depth information about the problem Some of the most popular forms of methods are focus groups, experiments, interviews, etc.

Data collected from these will need to be analysed. Empirical evidence can also be analysed either quantitatively and qualitatively. Using this, the researcher can answer empirical questions which have to be clearly defined and answerable with the findings he has got. The type of research design used will vary depending on the field in which it is going to be used. Many of them might choose to do a collective research involving quantitative and qualitative method to better answer questions which cannot be studied in a laboratory setting.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

Quantitative research methods aid in analyzing the empirical evidence gathered. By using these a researcher can find out if his hypothesis is supported or not.

  • Survey research: Survey research generally involves a large audience to collect a large amount of data. This is a quantitative method having a predetermined set of closed questions which are pretty easy to answer. Because of the simplicity of such a method, high responses are achieved. It is one of the most commonly used methods for all kinds of research in today’s world.

Previously, surveys were taken face to face only with maybe a recorder. However, with advancement in technology and for ease, new mediums such as emails , or social media have emerged.

For example: Depletion of energy resources is a growing concern and hence there is a need for awareness about renewable energy. According to recent studies, fossil fuels still account for around 80% of energy consumption in the United States. Even though there is a rise in the use of green energy every year, there are certain parameters because of which the general population is still not opting for green energy. In order to understand why, a survey can be conducted to gather opinions of the general population about green energy and the factors that influence their choice of switching to renewable energy. Such a survey can help institutions or governing bodies to promote appropriate awareness and incentive schemes to push the use of greener energy.

Learn more: Renewable Energy Survey Template Descriptive Research vs Correlational Research

  • Experimental research: In experimental research , an experiment is set up and a hypothesis is tested by creating a situation in which one of the variable is manipulated. This is also used to check cause and effect. It is tested to see what happens to the independent variable if the other one is removed or altered. The process for such a method is usually proposing a hypothesis, experimenting on it, analyzing the findings and reporting the findings to understand if it supports the theory or not.

For example: A particular product company is trying to find what is the reason for them to not be able to capture the market. So the organisation makes changes in each one of the processes like manufacturing, marketing, sales and operations. Through the experiment they understand that sales training directly impacts the market coverage for their product. If the person is trained well, then the product will have better coverage.

  • Correlational research: Correlational research is used to find relation between two set of variables . Regression analysis is generally used to predict outcomes of such a method. It can be positive, negative or neutral correlation.

LEARN ABOUT: Level of Analysis

For example: Higher educated individuals will get higher paying jobs. This means higher education enables the individual to high paying job and less education will lead to lower paying jobs.

  • Longitudinal study: Longitudinal study is used to understand the traits or behavior of a subject under observation after repeatedly testing the subject over a period of time. Data collected from such a method can be qualitative or quantitative in nature.

For example: A research to find out benefits of exercise. The target is asked to exercise everyday for a particular period of time and the results show higher endurance, stamina, and muscle growth. This supports the fact that exercise benefits an individual body.

  • Cross sectional: Cross sectional study is an observational type of method, in which a set of audience is observed at a given point in time. In this type, the set of people are chosen in a fashion which depicts similarity in all the variables except the one which is being researched. This type does not enable the researcher to establish a cause and effect relationship as it is not observed for a continuous time period. It is majorly used by healthcare sector or the retail industry.

For example: A medical study to find the prevalence of under-nutrition disorders in kids of a given population. This will involve looking at a wide range of parameters like age, ethnicity, location, incomes  and social backgrounds. If a significant number of kids coming from poor families show under-nutrition disorders, the researcher can further investigate into it. Usually a cross sectional study is followed by a longitudinal study to find out the exact reason.

  • Causal-Comparative research : This method is based on comparison. It is mainly used to find out cause-effect relationship between two variables or even multiple variables.

For example: A researcher measured the productivity of employees in a company which gave breaks to the employees during work and compared that to the employees of the company which did not give breaks at all.

LEARN ABOUT: Action Research

Some research questions need to be analysed qualitatively, as quantitative methods are not applicable there. In many cases, in-depth information is needed or a researcher may need to observe a target audience behavior, hence the results needed are in a descriptive analysis form. Qualitative research results will be descriptive rather than predictive. It enables the researcher to build or support theories for future potential quantitative research. In such a situation qualitative research methods are used to derive a conclusion to support the theory or hypothesis being studied.

LEARN ABOUT: Qualitative Interview

  • Case study: Case study method is used to find more information through carefully analyzing existing cases. It is very often used for business research or to gather empirical evidence for investigation purpose. It is a method to investigate a problem within its real life context through existing cases. The researcher has to carefully analyse making sure the parameter and variables in the existing case are the same as to the case that is being investigated. Using the findings from the case study, conclusions can be drawn regarding the topic that is being studied.

For example: A report mentioning the solution provided by a company to its client. The challenges they faced during initiation and deployment, the findings of the case and solutions they offered for the problems. Such case studies are used by most companies as it forms an empirical evidence for the company to promote in order to get more business.

  • Observational method:   Observational method is a process to observe and gather data from its target. Since it is a qualitative method it is time consuming and very personal. It can be said that observational research method is a part of ethnographic research which is also used to gather empirical evidence. This is usually a qualitative form of research, however in some cases it can be quantitative as well depending on what is being studied.

For example: setting up a research to observe a particular animal in the rain-forests of amazon. Such a research usually take a lot of time as observation has to be done for a set amount of time to study patterns or behavior of the subject. Another example used widely nowadays is to observe people shopping in a mall to figure out buying behavior of consumers.

  • One-on-one interview: Such a method is purely qualitative and one of the most widely used. The reason being it enables a researcher get precise meaningful data if the right questions are asked. It is a conversational method where in-depth data can be gathered depending on where the conversation leads.

For example: A one-on-one interview with the finance minister to gather data on financial policies of the country and its implications on the public.

  • Focus groups: Focus groups are used when a researcher wants to find answers to why, what and how questions. A small group is generally chosen for such a method and it is not necessary to interact with the group in person. A moderator is generally needed in case the group is being addressed in person. This is widely used by product companies to collect data about their brands and the product.

For example: A mobile phone manufacturer wanting to have a feedback on the dimensions of one of their models which is yet to be launched. Such studies help the company meet the demand of the customer and position their model appropriately in the market.

  • Text analysis: Text analysis method is a little new compared to the other types. Such a method is used to analyse social life by going through images or words used by the individual. In today’s world, with social media playing a major part of everyone’s life, such a method enables the research to follow the pattern that relates to his study.

For example: A lot of companies ask for feedback from the customer in detail mentioning how satisfied are they with their customer support team. Such data enables the researcher to take appropriate decisions to make their support team better.

Sometimes a combination of the methods is also needed for some questions that cannot be answered using only one type of method especially when a researcher needs to gain a complete understanding of complex subject matter.

We recently published a blog that talks about examples of qualitative data in education ; why don’t you check it out for more ideas?

Learn More: Data Collection Methods: Types & Examples

Since empirical research is based on observation and capturing experiences, it is important to plan the steps to conduct the experiment and how to analyse it. This will enable the researcher to resolve problems or obstacles which can occur during the experiment.

Step #1: Define the purpose of the research

This is the step where the researcher has to answer questions like what exactly do I want to find out? What is the problem statement? Are there any issues in terms of the availability of knowledge, data, time or resources. Will this research be more beneficial than what it will cost.

Before going ahead, a researcher has to clearly define his purpose for the research and set up a plan to carry out further tasks.

Step #2 : Supporting theories and relevant literature

The researcher needs to find out if there are theories which can be linked to his research problem . He has to figure out if any theory can help him support his findings. All kind of relevant literature will help the researcher to find if there are others who have researched this before, or what are the problems faced during this research. The researcher will also have to set up assumptions and also find out if there is any history regarding his research problem

Step #3: Creation of Hypothesis and measurement

Before beginning the actual research he needs to provide himself a working hypothesis or guess what will be the probable result. Researcher has to set up variables, decide the environment for the research and find out how can he relate between the variables.

Researcher will also need to define the units of measurements, tolerable degree for errors, and find out if the measurement chosen will be acceptable by others.

Step #4: Methodology, research design and data collection

In this step, the researcher has to define a strategy for conducting his research. He has to set up experiments to collect data which will enable him to propose the hypothesis. The researcher will decide whether he will need experimental or non experimental method for conducting the research. The type of research design will vary depending on the field in which the research is being conducted. Last but not the least, the researcher will have to find out parameters that will affect the validity of the research design. Data collection will need to be done by choosing appropriate samples depending on the research question. To carry out the research, he can use one of the many sampling techniques. Once data collection is complete, researcher will have empirical data which needs to be analysed.

LEARN ABOUT: Best Data Collection Tools

Step #5: Data Analysis and result

Data analysis can be done in two ways, qualitatively and quantitatively. Researcher will need to find out what qualitative method or quantitative method will be needed or will he need a combination of both. Depending on the unit of analysis of his data, he will know if his hypothesis is supported or rejected. Analyzing this data is the most important part to support his hypothesis.

Step #6: Conclusion

A report will need to be made with the findings of the research. The researcher can give the theories and literature that support his research. He can make suggestions or recommendations for further research on his topic.

Empirical research methodology cycle

A.D. de Groot, a famous dutch psychologist and a chess expert conducted some of the most notable experiments using chess in the 1940’s. During his study, he came up with a cycle which is consistent and now widely used to conduct empirical research. It consists of 5 phases with each phase being as important as the next one. The empirical cycle captures the process of coming up with hypothesis about how certain subjects work or behave and then testing these hypothesis against empirical data in a systematic and rigorous approach. It can be said that it characterizes the deductive approach to science. Following is the empirical cycle.

  • Observation: At this phase an idea is sparked for proposing a hypothesis. During this phase empirical data is gathered using observation. For example: a particular species of flower bloom in a different color only during a specific season.
  • Induction: Inductive reasoning is then carried out to form a general conclusion from the data gathered through observation. For example: As stated above it is observed that the species of flower blooms in a different color during a specific season. A researcher may ask a question “does the temperature in the season cause the color change in the flower?” He can assume that is the case, however it is a mere conjecture and hence an experiment needs to be set up to support this hypothesis. So he tags a few set of flowers kept at a different temperature and observes if they still change the color?
  • Deduction: This phase helps the researcher to deduce a conclusion out of his experiment. This has to be based on logic and rationality to come up with specific unbiased results.For example: In the experiment, if the tagged flowers in a different temperature environment do not change the color then it can be concluded that temperature plays a role in changing the color of the bloom.
  • Testing: This phase involves the researcher to return to empirical methods to put his hypothesis to the test. The researcher now needs to make sense of his data and hence needs to use statistical analysis plans to determine the temperature and bloom color relationship. If the researcher finds out that most flowers bloom a different color when exposed to the certain temperature and the others do not when the temperature is different, he has found support to his hypothesis. Please note this not proof but just a support to his hypothesis.
  • Evaluation: This phase is generally forgotten by most but is an important one to keep gaining knowledge. During this phase the researcher puts forth the data he has collected, the support argument and his conclusion. The researcher also states the limitations for the experiment and his hypothesis and suggests tips for others to pick it up and continue a more in-depth research for others in the future. LEARN MORE: Population vs Sample

LEARN MORE: Population vs Sample

There is a reason why empirical research is one of the most widely used method. There are a few advantages associated with it. Following are a few of them.

  • It is used to authenticate traditional research through various experiments and observations.
  • This research methodology makes the research being conducted more competent and authentic.
  • It enables a researcher understand the dynamic changes that can happen and change his strategy accordingly.
  • The level of control in such a research is high so the researcher can control multiple variables.
  • It plays a vital role in increasing internal validity .

Even though empirical research makes the research more competent and authentic, it does have a few disadvantages. Following are a few of them.

  • Such a research needs patience as it can be very time consuming. The researcher has to collect data from multiple sources and the parameters involved are quite a few, which will lead to a time consuming research.
  • Most of the time, a researcher will need to conduct research at different locations or in different environments, this can lead to an expensive affair.
  • There are a few rules in which experiments can be performed and hence permissions are needed. Many a times, it is very difficult to get certain permissions to carry out different methods of this research.
  • Collection of data can be a problem sometimes, as it has to be collected from a variety of sources through different methods.

LEARN ABOUT:  Social Communication Questionnaire

Empirical research is important in today’s world because most people believe in something only that they can see, hear or experience. It is used to validate multiple hypothesis and increase human knowledge and continue doing it to keep advancing in various fields.

For example: Pharmaceutical companies use empirical research to try out a specific drug on controlled groups or random groups to study the effect and cause. This way, they prove certain theories they had proposed for the specific drug. Such research is very important as sometimes it can lead to finding a cure for a disease that has existed for many years. It is useful in science and many other fields like history, social sciences, business, etc.

LEARN ABOUT: 12 Best Tools for Researchers

With the advancement in today’s world, empirical research has become critical and a norm in many fields to support their hypothesis and gain more knowledge. The methods mentioned above are very useful for carrying out such research. However, a number of new methods will keep coming up as the nature of new investigative questions keeps getting unique or changing.

Create a single source of real data with a built-for-insights platform. Store past data, add nuggets of insights, and import research data from various sources into a CRM for insights. Build on ever-growing research with a real-time dashboard in a unified research management platform to turn insights into knowledge.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

research paper on empirical

Product or Service: Which is More Important? — Tuesday CX Thoughts

Aug 13, 2024

research paper on empirical

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

Top 13 Reporting Tools to Transform Your Data Insights & More

Top 13 Reporting Tools to Transform Your Data Insights & More

Aug 8, 2024

Employee satisfaction

Employee Satisfaction: How to Boost Your  Workplace Happiness?

Aug 7, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Full colour logo of the Institute for Advanced Studies

Empirical Economics

Journal of the Institute for Advanced Studies, Vienna, Austria

  • Exemplary topics are treatment effect estimation, policy evaluation, forecasting, and econometric methods.
  • Contributions may focus on the estimation of established relationships between economic variables or on the testing of hypotheses.
  • Emphasizes the replicability of empirical results: replication studies may be published as short papers.
  • Follows a single-blind review procedure (authors’ names are known to reviewers, but reviewers are anonymous to authors). 
  • Submissions that have poor chances of receiving positive reviews are routinely rejected without sending the papers for review.

This is a transformative journal , you may have access to funding.

  • Robert M. Kunst
  • Bertrand Candelon,
  • Subal C. Kumbhakar,
  • Arthur H. O. van Soest,
  • Joakim Westerlund

Societies and partnerships

Full colour logo of the Institute for Advanced Studies

Latest issue

Volume 67, Issue 2

Latest articles

Pandemic, policy, and markets: insights and learning from covid-19’s impact on global stock behavior.

  • Shuxin Yang

research paper on empirical

Import shock and local labour market outcomes: A Sino-Indian case study

  • Feiyang Shi

research paper on empirical

Modelling green knowledge production and environmental policies with semiparametric panel data regression models

  • Antonio Musolesi
  • Davide Golinelli
  • Massimiliano Mazzanti

research paper on empirical

Unconditional cash transfers and child schooling: a meta-analysis

  • Zhi Zheng Chong
  • Siew Yee Lau

research paper on empirical

How do climate policy uncertainty and renewable energy and clean technology stock prices co-move? evidence from Canada

  • Seyed Alireza Athari
  • Dervis Kirikkaleli

research paper on empirical

Journal updates

Lawrence r. klein award 2021/2022.

This biannual prize is awarded for the best paper published in the journal Empirical Economics. 

The Empirical Economics prize was awarded for the fi rst time by Springer in 2006, and was renamed in honor of the Nobel prize winner Lawrence R. Klein in 2013.

Journal information

  • ABS Academic Journal Quality Guide
  • Australian Business Deans Council (ABDC) Journal Quality List
  • Engineering Village – GEOBASE
  • Google Scholar
  • Japanese Science and Technology Agency (JST)
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • Research Papers in Economics (RePEc)
  • Social Science Citation Index
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Editorial policies

© Springer-Verlag GmbH Germany, part of Springer Nature

  • Find a journal
  • Publish with us
  • Track your research

La Salle University

Connelly library, library main menu.

  • Course Reserves
  • Interlibrary Loan (ILL)
  • Study Room Use & Reservations
  • Technology & Printing
  • Citation Guides
  • Reserve Library Space
  • Request Instruction
  • Copyright Information
  • Guides for Faculty

Special Collections

  • University Archives
  • Historical & Cultural Collections
  • Rare Bibles & Prayer Books
  • Historical Research Guides
  • Information & Guidelines
  • Staff Directory
  • Meet with a Librarian
  • Directions & Building Maps

Research Hub

Qualitative and quantitative research, what is "empirical research".

  • empirical research
  • Locating Articles in Cinahl and PsycInfo
  • Locating Articles in PubMed
  • Getting the Articles

Empirical research  is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. 

How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."  Ask yourself: Could I recreate this study and test these results?

Key characteristics to look for:

  • Specific research questions  to be answered
  • Definition of the  population, behavior, or   phenomena  being studied
  • Description of the  process  used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys)

Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components:

  • Introduction : sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous studies
  • Methodology:  sometimes called "research design" --  how to recreate the study -- usually describes the population, research process, and analytical tools
  • Results : sometimes called "findings"  --  what was learned through the study -- usually appears as statistical data or as substantial quotations from research participants
  • Discussion : sometimes called "conclusion" or "implications" -- why the study is important -- usually describes how the research results influence professional practices or future studies
  • << Previous: Home
  • Next: Locating Articles in Cinahl and PsycInfo >>

Chat Assistance

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

Writing a Research Paper Introduction | Step-by-Step Guide

Published on September 24, 2022 by Jack Caulfield . Revised on March 27, 2023.

Writing a Research Paper Introduction

The introduction to a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your topic and get the reader interested
  • Provide background or summarize existing research
  • Position your own approach
  • Detail your specific research problem and problem statement
  • Give an overview of the paper’s structure

The introduction looks slightly different depending on whether your paper presents the results of original empirical research or constructs an argument by engaging with a variety of sources.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Step 1: introduce your topic, step 2: describe the background, step 3: establish your research problem, step 4: specify your objective(s), step 5: map out your paper, research paper introduction examples, frequently asked questions about the research paper introduction.

The first job of the introduction is to tell the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening hook.

The hook is a striking opening sentence that clearly conveys the relevance of your topic. Think of an interesting fact or statistic, a strong statement, a question, or a brief anecdote that will get the reader wondering about your topic.

For example, the following could be an effective hook for an argumentative paper about the environmental impact of cattle farming:

A more empirical paper investigating the relationship of Instagram use with body image issues in adolescent girls might use the following hook:

Don’t feel that your hook necessarily has to be deeply impressive or creative. Clarity and relevance are still more important than catchiness. The key thing is to guide the reader into your topic and situate your ideas.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

research paper on empirical

Try for free

This part of the introduction differs depending on what approach your paper is taking.

In a more argumentative paper, you’ll explore some general background here. In a more empirical paper, this is the place to review previous research and establish how yours fits in.

Argumentative paper: Background information

After you’ve caught your reader’s attention, specify a bit more, providing context and narrowing down your topic.

Provide only the most relevant background information. The introduction isn’t the place to get too in-depth; if more background is essential to your paper, it can appear in the body .

Empirical paper: Describing previous research

For a paper describing original research, you’ll instead provide an overview of the most relevant research that has already been conducted. This is a sort of miniature literature review —a sketch of the current state of research into your topic, boiled down to a few sentences.

This should be informed by genuine engagement with the literature. Your search can be less extensive than in a full literature review, but a clear sense of the relevant research is crucial to inform your own work.

Begin by establishing the kinds of research that have been done, and end with limitations or gaps in the research that you intend to respond to.

The next step is to clarify how your own research fits in and what problem it addresses.

Argumentative paper: Emphasize importance

In an argumentative research paper, you can simply state the problem you intend to discuss, and what is original or important about your argument.

Empirical paper: Relate to the literature

In an empirical research paper, try to lead into the problem on the basis of your discussion of the literature. Think in terms of these questions:

  • What research gap is your work intended to fill?
  • What limitations in previous work does it address?
  • What contribution to knowledge does it make?

You can make the connection between your problem and the existing research using phrases like the following.

Although has been studied in detail, insufficient attention has been paid to . You will address a previously overlooked aspect of your topic.
The implications of study deserve to be explored further. You will build on something suggested by a previous study, exploring it in greater depth.
It is generally assumed that . However, this paper suggests that … You will depart from the consensus on your topic, establishing a new position.

Now you’ll get into the specifics of what you intend to find out or express in your research paper.

The way you frame your research objectives varies. An argumentative paper presents a thesis statement, while an empirical paper generally poses a research question (sometimes with a hypothesis as to the answer).

Argumentative paper: Thesis statement

The thesis statement expresses the position that the rest of the paper will present evidence and arguments for. It can be presented in one or two sentences, and should state your position clearly and directly, without providing specific arguments for it at this point.

Empirical paper: Research question and hypothesis

The research question is the question you want to answer in an empirical research paper.

Present your research question clearly and directly, with a minimum of discussion at this point. The rest of the paper will be taken up with discussing and investigating this question; here you just need to express it.

A research question can be framed either directly or indirectly.

  • This study set out to answer the following question: What effects does daily use of Instagram have on the prevalence of body image issues among adolescent girls?
  • We investigated the effects of daily Instagram use on the prevalence of body image issues among adolescent girls.

If your research involved testing hypotheses , these should be stated along with your research question. They are usually presented in the past tense, since the hypothesis will already have been tested by the time you are writing up your paper.

For example, the following hypothesis might respond to the research question above:

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

research paper on empirical

The final part of the introduction is often dedicated to a brief overview of the rest of the paper.

In a paper structured using the standard scientific “introduction, methods, results, discussion” format, this isn’t always necessary. But if your paper is structured in a less predictable way, it’s important to describe the shape of it for the reader.

If included, the overview should be concise, direct, and written in the present tense.

  • This paper will first discuss several examples of survey-based research into adolescent social media use, then will go on to …
  • This paper first discusses several examples of survey-based research into adolescent social media use, then goes on to …

Full examples of research paper introductions are shown in the tabs below: one for an argumentative paper, the other for an empirical paper.

  • Argumentative paper
  • Empirical paper

Are cows responsible for climate change? A recent study (RIVM, 2019) shows that cattle farmers account for two thirds of agricultural nitrogen emissions in the Netherlands. These emissions result from nitrogen in manure, which can degrade into ammonia and enter the atmosphere. The study’s calculations show that agriculture is the main source of nitrogen pollution, accounting for 46% of the country’s total emissions. By comparison, road traffic and households are responsible for 6.1% each, the industrial sector for 1%. While efforts are being made to mitigate these emissions, policymakers are reluctant to reckon with the scale of the problem. The approach presented here is a radical one, but commensurate with the issue. This paper argues that the Dutch government must stimulate and subsidize livestock farmers, especially cattle farmers, to transition to sustainable vegetable farming. It first establishes the inadequacy of current mitigation measures, then discusses the various advantages of the results proposed, and finally addresses potential objections to the plan on economic grounds.

The rise of social media has been accompanied by a sharp increase in the prevalence of body image issues among women and girls. This correlation has received significant academic attention: Various empirical studies have been conducted into Facebook usage among adolescent girls (Tiggermann & Slater, 2013; Meier & Gray, 2014). These studies have consistently found that the visual and interactive aspects of the platform have the greatest influence on body image issues. Despite this, highly visual social media (HVSM) such as Instagram have yet to be robustly researched. This paper sets out to address this research gap. We investigated the effects of daily Instagram use on the prevalence of body image issues among adolescent girls. It was hypothesized that daily Instagram use would be associated with an increase in body image concerns and a decrease in self-esteem ratings.

The introduction of a research paper includes several key elements:

  • A hook to catch the reader’s interest
  • Relevant background on the topic
  • Details of your research problem

and your problem statement

  • A thesis statement or research question
  • Sometimes an overview of the paper

Don’t feel that you have to write the introduction first. The introduction is often one of the last parts of the research paper you’ll write, along with the conclusion.

This is because it can be easier to introduce your paper once you’ve already written the body ; you may not have the clearest idea of your arguments until you’ve written them, and things can change during the writing process .

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Caulfield, J. (2023, March 27). Writing a Research Paper Introduction | Step-by-Step Guide. Scribbr. Retrieved August 12, 2024, from https://www.scribbr.com/research-paper/research-paper-introduction/

Is this article helpful?

Jack Caulfield

Jack Caulfield

Other students also liked, writing strong research questions | criteria & examples, writing a research paper conclusion | step-by-step guide, research paper format | apa, mla, & chicago templates, what is your plagiarism score.

American Psychological Association Logo

Free APA Journals ™ Articles

Recently published articles from subdisciplines of psychology covered by more than 90 APA Journals™ publications.

For additional free resources (such as article summaries, podcasts, and more), please visit the Highlights in Psychological Research page.

  • Basic / Experimental Psychology
  • Clinical Psychology
  • Core of Psychology
  • Developmental Psychology
  • Educational Psychology, School Psychology, and Training
  • Forensic Psychology
  • Health Psychology & Medicine
  • Industrial / Organizational Psychology & Management
  • Neuroscience & Cognition
  • Social Psychology & Social Processes
  • Moving While Black: Intergroup Attitudes Influence Judgments of Speed (PDF, 71KB) Journal of Experimental Psychology: General February 2016 by Andreana C. Kenrick, Stacey Sinclair, Jennifer Richeson, Sara C. Verosky, and Janetta Lun
  • Recognition Without Awareness: Encoding and Retrieval Factors (PDF, 116KB) Journal of Experimental Psychology: Learning, Memory, and Cognition September 2015 by Fergus I. M. Craik, Nathan S. Rose, and Nigel Gopie
  • The Tip-of-the-Tongue Heuristic: How Tip-of-the-Tongue States Confer Perceptibility on Inaccessible Words (PDF, 91KB) Journal of Experimental Psychology: Learning, Memory, and Cognition September 2015 by Anne M. Cleary and Alexander B. Claxton
  • Cognitive Processes in the Breakfast Task: Planning and Monitoring (PDF, 146KB) Canadian Journal of Experimental Psychology / Revue canadienne de psychologie expérimentale September 2015 by Nathan S. Rose, Lin Luo, Ellen Bialystok, Alexandra Hering, Karen Lau, and Fergus I. M. Craik
  • Searching for Explanations: How the Internet Inflates Estimates of Internal Knowledge (PDF, 138KB) Journal of Experimental Psychology: General June 2015 by Matthew Fisher, Mariel K. Goddu, and Frank C. Keil
  • Client Perceptions of Corrective Experiences in Cognitive Behavioral Therapy and Motivational Interviewing for Generalized Anxiety Disorder: An Exploratory Pilot Study (PDF, 62KB) Journal of Psychotherapy Integration March 2017 by Jasmine Khattra, Lynne Angus, Henny Westra, Christianne Macaulay, Kathrin Moertl, and Michael Constantino
  • Attention-Deficit/Hyperactivity Disorder Developmental Trajectories Related to Parental Expressed Emotion (PDF, 160KB) Journal of Abnormal Psychology February 2016 by Erica D. Musser, Sarah L. Karalunas, Nathan Dieckmann, Tara S. Peris, and Joel T. Nigg
  • The Integrated Scientist-Practitioner: A New Model for Combining Research and Clinical Practice in Fee-For-Service Settings (PDF, 58KB) Professional Psychology: Research and Practice December 2015 by Jenna T. LeJeune and Jason B. Luoma
  • Psychotherapists as Gatekeepers: An Evidence-Based Case Study Highlighting the Role and Process of Letter Writing for Transgender Clients (PDF, 76KB) Psychotherapy September 2015 by Stephanie L. Budge
  • Perspectives of Family and Veterans on Family Programs to Support Reintegration of Returning Veterans With Posttraumatic Stress Disorder (PDF, 70KB) Psychological Services August 2015 by Ellen P. Fischer, Michelle D. Sherman, Jean C. McSweeney, Jeffrey M. Pyne, Richard R. Owen, and Lisa B. Dixon
  • "So What Are You?": Inappropriate Interview Questions for Psychology Doctoral and Internship Applicants (PDF, 79KB) Training and Education in Professional Psychology May 2015 by Mike C. Parent, Dana A. Weiser, and Andrea McCourt
  • Cultural Competence as a Core Emphasis of Psychoanalytic Psychotherapy (PDF, 81KB) Psychoanalytic Psychology April 2015 by Pratyusha Tummala-Narra
  • The Role of Gratitude in Spiritual Well-Being in Asymptomatic Heart Failure Patients (PDF, 123KB) Spirituality in Clinical Practice March 2015 by Paul J. Mills, Laura Redwine, Kathleen Wilson, Meredith A. Pung, Kelly Chinh, Barry H. Greenberg, Ottar Lunde, Alan Maisel, Ajit Raisinghani, Alex Wood, and Deepak Chopra
  • Nepali Bhutanese Refugees Reap Support Through Community Gardening (PDF, 104KB) International Perspectives in Psychology: Research, Practice, Consultation January 2017 by Monica M. Gerber, Jennifer L. Callahan, Danielle N. Moyer, Melissa L. Connally, Pamela M. Holtz, and Beth M. Janis
  • Does Monitoring Goal Progress Promote Goal Attainment? A Meta-Analysis of the Experimental Evidence (PDF, 384KB) Psychological Bulletin February 2016 by Benjamin Harkin, Thomas L. Webb, Betty P. I. Chang, Andrew Prestwich, Mark Conner, Ian Kellar, Yael Benn, and Paschal Sheeran
  • Youth Violence: What We Know and What We Need to Know (PDF, 388KB) American Psychologist January 2016 by Brad J. Bushman, Katherine Newman, Sandra L. Calvert, Geraldine Downey, Mark Dredze, Michael Gottfredson, Nina G. Jablonski, Ann S. Masten, Calvin Morrill, Daniel B. Neill, Daniel Romer, and Daniel W. Webster
  • Supervenience and Psychiatry: Are Mental Disorders Brain Disorders? (PDF, 113KB) Journal of Theoretical and Philosophical Psychology November 2015 by Charles M. Olbert and Gary J. Gala
  • Constructing Psychological Objects: The Rhetoric of Constructs (PDF, 108KB) Journal of Theoretical and Philosophical Psychology November 2015 by Kathleen L. Slaney and Donald A. Garcia
  • Expanding Opportunities for Diversity in Positive Psychology: An Examination of Gender, Race, and Ethnicity (PDF, 119KB) Canadian Psychology / Psychologie canadienne August 2015 by Meghana A. Rao and Stewart I. Donaldson
  • Racial Microaggression Experiences and Coping Strategies of Black Women in Corporate Leadership (PDF, 132KB) Qualitative Psychology August 2015 by Aisha M. B. Holder, Margo A. Jackson, and Joseph G. Ponterotto
  • An Appraisal Theory of Empathy and Other Vicarious Emotional Experiences (PDF, 151KB) Psychological Review July 2015 by Joshua D. Wondra and Phoebe C. Ellsworth
  • An Attachment Theoretical Framework for Personality Disorders (PDF, 100KB) Canadian Psychology / Psychologie canadienne May 2015 by Kenneth N. Levy, Benjamin N. Johnson, Tracy L. Clouthier, J. Wesley Scala, and Christina M. Temes
  • Emerging Approaches to the Conceptualization and Treatment of Personality Disorder (PDF, 111KB) Canadian Psychology / Psychologie canadienne May 2015 by John F. Clarkin, Kevin B. Meehan, and Mark F. Lenzenweger
  • A Complementary Processes Account of the Development of Childhood Amnesia and a Personal Past (PDF, 585KB) Psychological Review April 2015 by Patricia J. Bauer
  • Terminal Decline in Well-Being: The Role of Social Orientation (PDF, 238KB) Psychology and Aging March 2016 by Denis Gerstorf, Christiane A. Hoppmann, Corinna E. Löckenhoff, Frank J. Infurna, Jürgen Schupp, Gert G. Wagner, and Nilam Ram
  • Student Threat Assessment as a Standard School Safety Practice: Results From a Statewide Implementation Study (PDF, 97KB) School Psychology Quarterly June 2018 by Dewey Cornell, Jennifer L. Maeng, Anna Grace Burnette, Yuane Jia, Francis Huang, Timothy Konold, Pooja Datta, Marisa Malone, and Patrick Meyer
  • Can a Learner-Centered Syllabus Change Students’ Perceptions of Student–Professor Rapport and Master Teacher Behaviors? (PDF, 90KB) Scholarship of Teaching and Learning in Psychology September 2016 by Aaron S. Richmond, Jeanne M. Slattery, Nathanael Mitchell, Robin K. Morgan, and Jared Becknell
  • Adolescents' Homework Performance in Mathematics and Science: Personal Factors and Teaching Practices (PDF, 170KB) Journal of Educational Psychology November 2015 by Rubén Fernández-Alonso, Javier Suárez-Álvarez, and José Muñiz
  • Teacher-Ready Research Review: Clickers (PDF, 55KB) Scholarship of Teaching and Learning in Psychology September 2015 by R. Eric Landrum
  • Enhancing Attention and Memory During Video-Recorded Lectures (PDF, 83KB) Scholarship of Teaching and Learning in Psychology March 2015 by Daniel L. Schacter and Karl K. Szpunar
  • The Alleged "Ferguson Effect" and Police Willingness to Engage in Community Partnership (PDF, 70KB) Law and Human Behavior February 2016 by Scott E. Wolfe and Justin Nix
  • Randomized Controlled Trial of an Internet Cognitive Behavioral Skills-Based Program for Auditory Hallucinations in Persons With Psychosis (PDF, 92KB) Psychiatric Rehabilitation Journal September 2017 by Jennifer D. Gottlieb, Vasudha Gidugu, Mihoko Maru, Miriam C. Tepper, Matthew J. Davis, Jennifer Greenwold, Ruth A. Barron, Brian P. Chiko, and Kim T. Mueser
  • Preventing Unemployment and Disability Benefit Receipt Among People With Mental Illness: Evidence Review and Policy Significance (PDF, 134KB) Psychiatric Rehabilitation Journal June 2017 by Bonnie O'Day, Rebecca Kleinman, Benjamin Fischer, Eric Morris, and Crystal Blyler
  • Sending Your Grandparents to University Increases Cognitive Reserve: The Tasmanian Healthy Brain Project (PDF, 88KB) Neuropsychology July 2016 by Megan E. Lenehan, Mathew J. Summers, Nichole L. Saunders, Jeffery J. Summers, David D. Ward, Karen Ritchie, and James C. Vickers
  • The Foundational Principles as Psychological Lodestars: Theoretical Inspiration and Empirical Direction in Rehabilitation Psychology (PDF, 68KB) Rehabilitation Psychology February 2016 by Dana S. Dunn, Dawn M. Ehde, and Stephen T. Wegener
  • Feeling Older and Risk of Hospitalization: Evidence From Three Longitudinal Cohorts (PDF, 55KB) Health Psychology Online First Publication — February 11, 2016 by Yannick Stephan, Angelina R. Sutin, and Antonio Terracciano
  • Anger Intensification With Combat-Related PTSD and Depression Comorbidity (PDF, 81KB) Psychological Trauma: Theory, Research, Practice, and Policy January 2016 by Oscar I. Gonzalez, Raymond W. Novaco, Mark A. Reger, and Gregory A. Gahm
  • Special Issue on eHealth and mHealth: Challenges and Future Directions for Assessment, Treatment, and Dissemination (PDF, 32KB) Health Psychology December 2015 by Belinda Borrelli and Lee M. Ritterband
  • Posttraumatic Growth Among Combat Veterans: A Proposed Developmental Pathway (PDF, 110KB) Psychological Trauma: Theory, Research, Practice, and Policy July 2015 by Sylvia Marotta-Walters, Jaehwa Choi, and Megan Doughty Shaine
  • Racial and Sexual Minority Women's Receipt of Medical Assistance to Become Pregnant (PDF, 111KB) Health Psychology June 2015 by Bernadette V. Blanchfield and Charlotte J. Patterson
  • An Examination of Generational Stereotypes as a Path Towards Reverse Ageism (PDF, 205KB) The Psychologist-Manager Journal August 2017 By Michelle Raymer, Marissa Reed, Melissa Spiegel, and Radostina K. Purvanova
  • Sexual Harassment: Have We Made Any Progress? (PDF, 121KB) Journal of Occupational Health Psychology July 2017 By James Campbell Quick and M. Ann McFadyen
  • Multidimensional Suicide Inventory-28 (MSI-28) Within a Sample of Military Basic Trainees: An Examination of Psychometric Properties (PDF, 79KB) Military Psychology November 2015 By Serena Bezdjian, Danielle Burchett, Kristin G. Schneider, Monty T. Baker, and Howard N. Garb
  • Cross-Cultural Competence: The Role of Emotion Regulation Ability and Optimism (PDF, 100KB) Military Psychology September 2015 By Bianca C. Trejo, Erin M. Richard, Marinus van Driel, and Daniel P. McDonald
  • The Effects of Stress on Prospective Memory: A Systematic Review (PDF, 149KB) Psychology & Neuroscience September 2017 by Martina Piefke and Katharina Glienke
  • Don't Aim Too High for Your Kids: Parental Overaspiration Undermines Students' Learning in Mathematics (PDF, 164KB) Journal of Personality and Social Psychology November 2016 by Kou Murayama, Reinhard Pekrun, Masayuki Suzuki, Herbert W. Marsh, and Stephanie Lichtenfeld
  • Sex Differences in Sports Interest and Motivation: An Evolutionary Perspective (PDF, 155KB) Evolutionary Behavioral Sciences April 2016 by Robert O. Deaner, Shea M. Balish, and Michael P. Lombardo
  • Asian Indian International Students' Trajectories of Depression, Acculturation, and Enculturation (PDF, 210KB) Asian American Journal of Psychology March 2016 By Dhara T. Meghani and Elizabeth A. Harvey
  • Cynical Beliefs About Human Nature and Income: Longitudinal and Cross-Cultural Analyses (PDF, 163KB) January 2016 Journal of Personality and Social Psychology by Olga Stavrova and Daniel Ehlebracht
  • Annual Review of Asian American Psychology, 2014 (PDF, 384KB) Asian American Journal of Psychology December 2015 By Su Yeong Kim, Yishan Shen, Yang Hou, Kelsey E. Tilton, Linda Juang, and Yijie Wang
  • Resilience in the Study of Minority Stress and Health of Sexual and Gender Minorities (PDF, 40KB) Psychology of Sexual Orientation and Gender Diversity September 2015 by Ilan H. Meyer
  • Self-Reported Psychopathy and Its Association With Criminal Cognition and Antisocial Behavior in a Sample of University Undergraduates (PDF, 91KB) Canadian Journal of Behavioural Science / Revue canadienne des sciences du comportement July 2015 by Samantha J. Riopka, Richard B. A. Coupland, and Mark E. Olver

Journals Publishing Resource Center

Find resources for writing, reviewing, and editing articles for publishing with APA Journals™.

Visit the resource center

Journals information

  • Frequently Asked Questions
  • Journal statistics and operations data
  • Special Issues
  • Email alerts
  • Copyright and permissions

Contact APA Publications

Reference management. Clean and simple.

Types of research papers

research paper on empirical

Analytical research paper

Argumentative or persuasive paper, definition paper, compare and contrast paper, cause and effect paper, interpretative paper, experimental research paper, survey research paper, frequently asked questions about the different types of research papers, related articles.

There are multiple different types of research papers. It is important to know which type of research paper is required for your assignment, as each type of research paper requires different preparation. Below is a list of the most common types of research papers.

➡️ Read more:  What is a research paper?

In an analytical research paper you:

  • pose a question
  • collect relevant data from other researchers
  • analyze their different viewpoints

You focus on the findings and conclusions of other researchers and then make a personal conclusion about the topic. It is important to stay neutral and not show your own negative or positive position on the matter.

The argumentative paper presents two sides of a controversial issue in one paper. It is aimed at getting the reader on the side of your point of view.

You should include and cite findings and arguments of different researchers on both sides of the issue, but then favor one side over the other and try to persuade the reader of your side. Your arguments should not be too emotional though, they still need to be supported with logical facts and statistical data.

Tip: Avoid expressing too much emotion in a persuasive paper.

The definition paper solely describes facts or objective arguments without using any personal emotion or opinion of the author. Its only purpose is to provide information. You should include facts from a variety of sources, but leave those facts unanalyzed.

Compare and contrast papers are used to analyze the difference between two:

Make sure to sufficiently describe both sides in the paper, and then move on to comparing and contrasting both thesis and supporting one.

Cause and effect papers are usually the first types of research papers that high school and college students write. They trace probable or expected results from a specific action and answer the main questions "Why?" and "What?", which reflect effects and causes.

In business and education fields, cause and effect papers will help trace a range of results that could arise from a particular action or situation.

An interpretative paper requires you to use knowledge that you have gained from a particular case study, for example a legal situation in law studies. You need to write the paper based on an established theoretical framework and use valid supporting data to back up your statement and conclusion.

This type of research paper basically describes a particular experiment in detail. It is common in fields like:

Experiments are aimed to explain a certain outcome or phenomenon with certain actions. You need to describe your experiment with supporting data and then analyze it sufficiently.

This research paper demands the conduction of a survey that includes asking questions to respondents. The conductor of the survey then collects all the information from the survey and analyzes it to present it in the research paper.

➡️ Ready to start your research paper? Take a look at our guide on how to start a research paper .

In an analytical research paper, you pose a question and then collect relevant data from other researchers to analyze their different viewpoints. You focus on the findings and conclusions of other researchers and then make a personal conclusion about the topic.

The definition paper solely describes facts or objective arguments without using any personal emotion or opinion of the author. Its only purpose is to provide information.

Cause and effect papers are usually the first types of research papers that high school and college students are confronted with. The answer questions like "Why?" and "What?", which reflect effects and causes. In business and education fields, cause and effect papers will help trace a range of results that could arise from a particular action or situation.

This type of research paper describes a particular experiment in detail. It is common in fields like biology, chemistry or physics. Experiments are aimed to explain a certain outcome or phenomenon with certain actions.

research paper on empirical

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 07 August 2024

Highest ocean heat in four centuries places Great Barrier Reef in danger

  • Benjamin J. Henley   ORCID: orcid.org/0000-0003-3940-1963 1 , 2 , 3 ,
  • Helen V. McGregor   ORCID: orcid.org/0000-0002-4031-2282 1 , 2 ,
  • Andrew D. King   ORCID: orcid.org/0000-0001-9006-5745 4 , 5 ,
  • Ove Hoegh-Guldberg   ORCID: orcid.org/0000-0001-7510-6713 6 ,
  • Ariella K. Arzey 1 , 2 ,
  • David J. Karoly 4 ,
  • Janice M. Lough 7 ,
  • Thomas M. DeCarlo   ORCID: orcid.org/0000-0003-3269-1320 8 , 9 &
  • Braddock K. Linsley   ORCID: orcid.org/0000-0003-2085-0662 10  

Nature volume  632 ,  pages 320–326 ( 2024 ) Cite this article

12k Accesses

1 Citations

2914 Altmetric

Metrics details

  • Climate change
  • Environmental impact
  • Palaeoclimate

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST) 1 . The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR 2 , but the long-term context of recent temperatures in the region is unclear. Here we show that the January–March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching 3 , with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function 4 and outstanding universal value 5 of one of Earth’s greatest natural wonders.

Similar content being viewed by others

research paper on empirical

Mesophotic coral bleaching associated with changes in thermocline depth

research paper on empirical

Atypical weather patterns cause coral bleaching on the Great Barrier Reef, Australia during the 2021–2022 La Niña

research paper on empirical

Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming

Like many coral reefs globally, the World Heritage-listed GBR in Australia is under threat 4 , 6 . Mass coral bleaching, declining calcification rates 5 , 7 , outbreaks of crown-of-thorns starfish ( Acanthaster spp.) 8 , severe tropical cyclones 9 and overfishing 10 have placed compounding detrimental pressures on the reef ecosystem. Coral bleaching typically occurs when heat stress triggers the breakdown of the symbiosis between corals and their symbiotic dinoflagellates 11 . Although coral bleaching can occur locally as a result of low salinity, cold waters or pollution, regional and global mass bleaching events, in which the majority of corals in one or more regions bleach at once, are strongly associated with increasing SST linked to global warming 2 .

The first modern observations of mass coral bleaching on the GBR occurred in the 1980s, but these events were less widespread and generally less severe 3 than the bleaching events in the twenty-first century 4 . Stress bands in coral skeletal cores have provided potential evidence for pre-1980s bleaching in the GBR and Coral Sea, such as during the 1877–78 El Niño 12 . However, stress bands are evident in relatively few cores before 1980 (ref. 12 ),  suggesting that severe mass bleaching did not occur in the 1800s and most of the 1900s.

As the oceans have warmed, however, mass coral bleaching events have become increasingly lethal to corals 4 . Coral bleaching on the GBR 1 in 1998 coincided with a strong eastern-Pacific El Niño, and in 2002 with a weak El Niño. El Niño events can induce lower cloud cover and increased solar irradiance over the GBR 13 , increasing the risk of thermal stress and mass bleaching events 14 . In 2004, water temperatures were anomalously warm, and although bleaching occurred in the Coral Sea 15 , it was not widespread in the GBR, probably because there was reduced upwelling and an associated reduced influence of nutrients on symbiotic dinoflagellate expulsion 16 .

However, in the nine January–March periods from 2016 to 2024 (inclusive) there were five mass coral bleaching events on the GBR. Each was associated with high SSTs and affected large sections of the reef. GBR mass bleaching occurred in both 2016 and 2017, influenced by the presence of an El Niño event in 2016, and led to the death of at least 50% of shallow-water (depths of 5–10 m) reef-building corals 4 . Major bleaching events occurred again in quick succession in 2020 and 2022, with the accumulated heat stress for large sections of the GBR reaching levels conducive to widespread bleaching but lower levels of coral mortality 1 . The bleaching event in 2022 occurred, unusually, during a La Niña event, which is typically associated with cooler summer SSTs, higher than average rainfall and higher cloud cover on the GBR 1 . At the time of writing, researchers are assessing the impacts of the 2024 mass bleaching event.

The frequency of recent mass coral bleaching and mortality on the GBR is cause for concern. In 2021, the World Heritage Committee of the United Nations Educational, Scientific and Cultural Organization (UNESCO) drafted 17 a decision to inscribe the GBR on the List of World Heritage in Danger, stating that the reef is “facing ascertained danger”, citing recent mass coral bleaching events and insufficient progress by the State Party (Australia) in countering climate change, improving water quality and land management issues. The committee’s adopted decisions 18 have not included inscription of the ‘in danger’ status, but the draft inscription highlights the seriousness of the recent mass coral bleaching events. Authorities in Australia 5 have noted that climate change and coral bleaching have deteriorated the integrity of the outstanding universal value of the GBR, a defining feature of its World Heritage status.

Although rapidly rising SSTs are attributed to human activities with virtual certainty 19 , understanding the multi-century SST history of the GBR is critical to understanding the influence of SST on mass coral bleaching and mortality in recent decades. Putting aside a problematic attempt to do this 20 , which was discredited 21 , 22 , knowledge of the long-term context for GBR SSTs comes primarily from two multi-century reconstructions based on the geochemistry of coral cores collected from the inner shelf 23 and outer shelf 24 (Flinders Reef) in the central GBR. These reconstructions showed that SSTs in the early 2000s were not unusually high relative to levels in the past three centuries, with five-year mean SSTs (and salinities) estimated to be higher in the 1700s than in the 1900s. However, these records were limited by their relatively coarse five-year sampling resolution and their most recent data point being from the early 2000s. After these studies were published, SSTs in the GBR have continued to rise. Updated analysis of coral data from Flinders Reef provides valuable improved temporal resolution 25 , but interpretations of these records remain limited spatially.

Here, we investigate the recent high SST events in the GBR region in the context of the past four centuries. We combine a network of 22 coral Sr/Ca and δ 18 O palaeothermometer series (Supplementary Tables 1 and 2 ) located in and near to the Coral Sea region to infer spatial mean SST anomalies (SSTAs) for January–March, the months when maximum SST and thermal bleaching are most likely to occur in the Coral Sea 16 , 26 , each year from 1618 to 1995 ( Methods and Supplementary Information ). Anthropogenic climate change began and proceeded entirely within the multi-century lives of some of these massive coral colonies, offering a continuous multi-century record covering the industrial era. We use this 1618–1995 reconstruction and the available 1900–2024 instrumental data to contextualize the modern trend and rank four centuries of January–March SSTAs with greater precision than was previously possible. We then assess the degree of human influence on ocean temperatures in the region using climate model simulations run both with and without anthropogenic forcing.

The instrumental period (1900–present)

Mass coral bleaching on the GBR in 2016, 2017, 2020, 2022 and 2024 during January–March coincided with widespread warm SSTAs in the surrounding seas 1 , including the Coral Sea (Fig. 1a–e , using ERSSTv5 data 27 ). The Coral Sea and GBR have experienced a strong warming trend since 1900 (Fig. 1f ). January–March SSTAs averaged over the GBR are strongly correlated ( ρ  = 0.84, P   ≪  0.01) with those in the broader Coral Sea (Fig. 1f ), including when the long-term warming trend is removed from both time series ( ρ  = 0.69, P  < 0.01; Supplementary Fig. 4 ). Based on the strength of this correlation, we associate high January–March area-averaged Coral Sea SSTAs with increased thermal bleaching risk in the GBR.

figure 1

a – e , SSTAs (using ERSSTv5 data) for January–March in the Australasian region relative to the 1961–90 average for the five recent GBR mass coral bleaching years: 2016, 2017, 2020, 2022 and 2024. The black box shows the Coral Sea region (4° S–26° S, 142° E–174° E). f , Coral Sea and GBR mean SSTAs for 1900–2024 in January–March relative to the 1961–90 average. The black vertical lines indicate the five recent GBR mass coral bleaching years.

Record temperatures were set in 2016 and 2017 in the Coral Sea, and in 2020 they peaked fractionally below the record high of 2017. The January–March of 2022 was another warm event, the fifth warmest on record at the time. Recent data (ERSSTv5) indicate that 2024 set a new record by a margin of more than 0.19 °C above the previous record for the region. The January–March mean SSTs averaged over the five mass bleaching years during the period 2016–2024 are 0.77 °C higher than the 1961–90 January–March averages in both the Coral Sea and the GBR. The multidecadal warming trend, extreme years and association between GBR and Coral Sea SSTs are similar for the HadISST 28 gridded SST dataset, with some notable differences in the 1900–40 period (Supplementary Fig. 3 ). Furthermore, analysis of modern temperature-sensitive Sr/Ca series from GBR corals for 1900–2017 provides coherent independent evidence of statistically significant multi-decadal warming trends in January–March SSTs in the central and southern GBR (Supplementary Information section  4.2 ).

A multi-century context (1618–present)

Reconstructing Coral Sea January–March SSTs from 1618 to 1995 extends the century-long instrumental record back in time by an additional three centuries (Fig. 2a and Methods ). The reconstruction (calibrated to ERSSTv5) shows that multi-decadal SST variability was a persistent feature in the past. At the centennial timescale, there is relative stability before 1900, with the exception that cooler temperatures prevailed in the 1600s. Warming during the industrial era has been evident since the early 1900s (Fig. 2a ). There is a warming trend for January–March of 0.09 °C per decade for 1900–2024 and 0.12 °C per decade for 1960–2024 (Fig. 1f ) using ERSSTv5 data. Calibrating our reconstruction to HadISST1.1 yields similar results, with some differences in the degree of pre-1900 variability at both multi-decadal and centennial timescales (Supplementary Information section  5.2.6 ).

figure 2

a , Reconstructed and observed mean January–March SSTAs in the Coral Sea for 1618–2024 relative to 1961–90. Dark blue, highest skill (maximum coefficient of efficiency) reconstruction with the full proxy network; light blue, 5th–95th-percentile reconstruction uncertainty; black, observed (ERSSTv5) data. Red crosses indicate the five recent mass bleaching events. Dashed lines indicate the best estimate (highest skill, red) and 95th-percentile (pink) uncertainty bound for the maximum pre-1900 January–March SSTA. b , Central GBR SSTA for the inner shelf 23 in thick orange and outer shelf 25 (Flinders Reef) in thin orange lines; these series are aligned here (see Methods ) with modern observations of mean GBR SSTAs for January–March relative to 1961–90. Observed data are shown at annual (grey line) and five-year (black line with open circles, plotted at the centre of each five-year period and temporally aligned with the five-year coral series 23 ) resolution. Dashed lines indicate best-estimate pre-1900 January–March maxima for refs. 23 (red) and 25 (pink). Orange shading indicates 5th–95th-percentile uncertainty bounds. Red crosses indicate the five recent mass bleaching events. c , Evaluation metrics for the Coral Sea reconstruction (Supplementary Information section  3.1 ); RE, reduction of error; CE, coefficient of efficiency; Rsq-cal, R-squared in the calibration period; Rsq-ver, R-squared in the verification (evaluation) period. d , Coral data locations relative to source data region (orange box) and Coral Sea region (red box). Coral proxy metadata are given in Supplementary Tables 1 and 2 .

Our best-estimate (highest skill; Methods ) annual-resolution Coral Sea reconstruction (Fig. 2a ), using the full coral network calibrated to the ERSSTv5 instrumental data, indicates that the January–March mean SSTAs in 2016, 2017, 2020, 2022 and 2024 were, respectively, 1.50 °C, 1.54 °C, 1.53 °C, 1.46 °C and 1.73 °C above the 1618–1899 (hereafter ‘pre-1900’) reconstructed average. Using the same best-estimate reconstruction, Coral Sea January–March SSTs during these GBR mass bleaching years were five of the six warmest years the region has experienced in the past 400 years (Fig. 2a ).

By comparing the recent warm events to the reconstruction’s uncertainty range ( Methods ), we quantify, using likelihood terminology consistent with recent reports from the Intergovernmental Panel on Climate Change 19 , that the recent heat extremes in 2017, 2020 and 2024 are ‘extremely likely’ (>95th percentile; Fig. 2a ) to be higher than any January–March in the period 1618–1899. Furthermore, the heat extremes in 2016 and 2022 are (at least) ‘very likely’ (>90th percentile) to be above the pre-1900 maximum. We perform a series of tests that verify that our findings are not simply an artefact of the nature of the coral network itself (Supplementary Information section 5.2 ). In a network perturbation test, we generate 22 subsets of the reconstruction by adding proxy records incrementally in order from the highest to the lowest correlation with the target (Supplementary Information section  5.2.5 ). We confirm that 2017, 2020 and 2024 were ‘extremely likely’ (>95th percentile) to have been warmer than any year pre-1900 (using ERSSTv5 data) for all of these proxy subsets. Furthermore, in 20 of the 22 subsets, 2016 was also ‘extremely likely’ (>95th percentile), rather than ‘very likely’, to be warmer (2022 was ‘extremely likely’ in 14 of the 22 subsets). All our additional tests, including a reconstruction with only Sr/Ca coral data (thereby omitting the possibility of any non-temperature signal in δ 18 O coral on the reconstruction), achieve high reconstruction skill and confirm the extraordinary nature of recent extreme temperatures in the multi-century context (Supplementary Information section  5.2 ). Analyses using HadISST1.1 generally show lower correlations with the coral data and reconstructions with slightly warmer regional SSTs before 1900, along with more-muted centennial and multi-decadal variability in the pre-instrumental period. Nevertheless, the HadISST1.1-calibrated reconstructions show that the recent thermal extremes are well above the best estimate (highest skill) of the pre-1900 maximum of reconstructed January–March SSTAs (Supplementary Fig. 42 ). Furthermore, lower SSTAs (in the HadISST1.1 data) relative to the previous three centuries (as in our reconstructions calibrated to HadISST1.1), coupled with the recently observed mass coral bleaching events, could indicate that long-lived corals have a greater sensitivity to warming than is currently recognized.

Reconstructed regional GBR SSTAs based on a five-year-resolution, multi-century coral δ 18 O record from the central inshore GBR 23 (Fig. 2b ) show similarly strong warming since 1900 but more multi-decadal-to-centennial variability than the Coral Sea reconstruction. Recent five-year mean January–March GBR SSTAs narrowly exceed the best estimate of the maximum pre-1900 five-year mean since the early 1600s (Fig. 2b ). The averages for the five-year periods centred on 2018 and 2022 exceed the pre-1900 maximum by 0.11 °C and 0.06 °C, respectively. Results are similar using the five-year-resolution Flinders Reef (central outer shelf) 24 record (Supplementary Fig. 24 ), although its interpretation is limited by the lack of uncertainty estimates available for that record. Our Coral Sea reconstruction incorporates an updated (annual resolution) record from Flinders Reef 25 , which indicates similar centennial trends (thin orange line in Fig. 2b ) and shows that the recent high January–March SSTA events have approached the estimated local pre-1900 maximum SSTA. Although contiguous multi-century cores from within the GBR are limited in their spatial extent, twentieth-century warming is evident in these records.

The extraordinary nature of the recent Coral Sea January–March SSTs in the context of the past 400 years is further illustrated by comparing the ranked temperature anomalies (Fig. 3 ) for the combined reconstructed and instrumental period from 1618–2024, incorporating reconstruction uncertainty ( Methods ). The mass coral bleaching years of 2016, 2017, 2020, 2022 and 2024, and the heat event of 2004, stand out as the warmest events across the whole 407-year record. The warmest three years (2024, 2017 and 2020) exceed the upper uncertainty bound (95th percentile) of the warmest reconstructed January–March in the pre-1900 period (pink (upper) dashed line in Fig. 3 ); 2016, 2004 and 2022 exceed the 90th percentile bound (red (lower) dashed line in Fig. 3 ). The warming trend is clear in the association between the ascending rank of the temperature anomalies and the year (shown as the colour of the filled circles in Fig. 3 ). Despite high interannual variability, 78 of the warmest 100 January–March periods between 1618 and 2024 occurred after 1900, and the 23 warmest all occur after 1900. The warmest 20 January–March periods all occur after 1950, coinciding with accelerated global warming.

figure 3

Ranked January–March SSTAs for 1618–2024 relative to 1961–90 (coloured circles) from the best-estimate (highest skill, full coral network) reconstruction (1618–1899) and instrumental (ERSSTv5) data (1900–2024). The year is indicated by the colour of the filled circles. The 5th–95th-percentile uncertainty bounds of the pre-1900 reconstructed SSTAs are shown by small grey dots. The year labels indicate the warmest six years on record, five of which were mass coral bleaching years on the GBR. The pink (upper) dashed line indicates the 95th-percentile uncertainty bound of the maximum pre-1900 reconstructed SSTA; the red (lower) dashed line indicates the 90th-percentile limit.

Assessing anthropogenic influence

Using climate model simulations from the most recent (sixth) phase of the Coupled Model Intercomparison Project 29 (CMIP6), we assess the human influence on January–March SSTAs in the Coral Sea. The model simulations are from two experiments in the Detection and Attribution Model Intercomparison Project (DAMIP) 30 . The first set of simulations represents historical climate conditions, including both the natural and human influences on the climate system over the 1850–2014 period (‘historical’; red in Fig. 4 ). The second experiment is a counterfactual climate that spans the same period and uses the same models but includes only natural influences on the climate, omitting all human influences (‘historical-natural’; blue in Fig. 4 ). The historical experiment includes anthropogenic emissions of greenhouse gases and aerosols, stratospheric ozone changes and anthropogenic land-use changes; the historical-natural experiment does not. Variations in natural climate forcings, such as from volcanic eruptions and solar variability, are incorporated in both experiments. We include models that have a transient climate response (the global mean surface-temperature anomaly at the time of a doubling of atmospheric CO 2 concentration) in the range 1.4–2.2 °C, which is deemed ‘likely’ by the science community 31 ( Methods and Supplementary Information ).

figure 4

Climate-model simulations of Coral Sea January–March SSTAs relative to the 1850–1900 average for the period 1850–2014, for models within the ‘likely’ range for their transient climate response 31 . The blue line (median) and light blue shading (5th–95th-percentile limits) are from the ‘historical-natural’ climate model simulations (no anthropogenic climate forcing); the red line and light red shading are from the ‘historical’ simulations (anthropogenic influences on the climate included) using the same set of climate models. The climate-model-derived time of emergence of anthropogenic climate change, shown by the grey and black vertical lines (1976 and 1997), is when the ratio of the climate change signal to the standard deviation of noise/variability 32 across model ensemble members first rises above 1 and 2, respectively. All models are represented equally in the model ensemble.

It is only with the incorporation of anthropogenic influences on the climate that the model simulations capture the modern-era warming of the Coral Sea January–March SSTA (Fig. 4 ). The median of the historical simulations has statistically significant warming trends of 0.05 °C, 0.10 °C and 0.15 °C per decade for the periods from 1900, 1950 and 1970 to 2014, respectively; the equivalent historical-natural trends are smaller in magnitude than ±0.01 °C per decade. To further explore the centennial-scale trends, we use a bootstrap ensemble ( Methods ) of the two sets of 165-year simulations from 1850–2014. We found that 100% of the historical bootstrap ensemble has statistically significant positive trends ( Methods ) for 1900–2014, but this value is 0% for the historical-natural ensemble. The observed (ERSSTv5) mean SSTA for 2016–2024 of 0.60 °C relative to 1961–90 is warmer than any nine-year sequence in the 7,095 simulated years in the historical-natural experiments from models with transient climate responses in the ‘likely’ range 31 .

We also use the simulations to estimate the time of emergence of the anthropogenic influence on January–March Coral Sea SSTAs above the natural background variability. The anthropogenic warming signal 32 increases from near zero in 1900 to around 0.5 standard deviations of the variability (‘noise’) in 1960. The climate change signal-to-noise ratio then increases rapidly from 1960 to 2014, exceeding 1.0 in 1976, 2.0 in 1997 and around 2.8 by 2014, the end of these simulations (Fig. 4 , Methods and Supplementary Fig. 50 ). Anthropogenic impacts on the climate are virtually certain to be the primary driver of this long-term warming in the Coral Sea.

Previously, our knowledge of the SST history of the GBR and the Coral Sea region has been highly dependent on instrumental observations, with the exception of the five-year-resolution multi-century coral Sr/Ca and U/Ca SST reconstructions from the two point locations in the central GBR 23 , 24 , an update at one of these locations 25 , seasonal resolution ‘floating’ (in time) chronologies from the GBR in the Holocene 33 , 34 and point SST estimates further back in time 35 . Thus, the context of recent warming trends in the Coral Sea and GBR and their relation to natural variability on decadal to centennial timescales is largely unknown without reconstructions such as the one we developed here.

Our coral proxy network is located mostly beyond the GBR, in the Coral Sea, and some series are located outside the Coral Sea region (Fig. 2d ). The selection of the Coral Sea as a study region allowed for a larger sample of contributing coral proxy data than exists for the GBR. However, coral bleaching on the GBR can be influenced by factors other than large-scale SST, including local oceanic and atmospheric dynamics that can modulate the occurrence and severity of thermal bleaching and mortality events 13 . Nonetheless, warming of seasonal SSTs over the larger Coral Sea region is likely to prime the background state and increase the likelihood of smaller spatio-temporal-scale heat anomalies. Furthermore, where we use only the five-year resolution series directly from the GBR to reconstruct GBR SSTAs, we draw similar conclusions about the long-term trajectory of SSTAs as for our full coral network (Fig. 2b and Supplementary Fig. 24 ). Furthermore, short modern coral series from within the GBR, analysed in this study, document a multi-decadal warming signal that is coherent with instrumental data (Supplementary Figs. 29 and 30 ). Nonetheless, additional high-resolution, multi-century, temperature-sensitive coral geochemical series from within the GBR would help unravel the local and remote ocean–atmosphere contributions to past bleaching events and reduce uncertainties.

The focus on the larger Coral Sea study region also takes advantage of the global modelling efforts of CMIP6. The large number of ensemble members available for CMIP6 means that greater climate model diversity, and therefore greater certainty in our attribution analysis, is possible compared with most single model analyses. There is also a methodological benefit in having high replication of the same experiments run with multiple climate models. However, coarse-resolution global-scale models do not accurately simulate smaller-scale processes, such as inshore currents and mesoscale eddies in the Coral Sea or the Gulf of Carpentaria, which probably affect local surface temperatures and variations in nutrient upwelling in the GBR 36 , 37 . Upwelling on the GBR is linked to the strength of the East Australian Current 16 , the southward branch of the South Pacific subtropical gyre. The CMIP-scale models we use do capture these gyre dynamics. The models show that the East Australian Current is expected to increase in strength as the climate continues to warm through this century 38 , and this may lead to more nutrient inputs that can exacerbate coral sensitivity to rising heat stress 39 , 40 . As well as focusing our model analysis on the larger Coral Sea region, we use a three-month time step. In doing so, we minimize the impact of model spatio-temporal resolution on our inferences about the role of anthropogenic greenhouse-gas emissions on the SST conditions that give rise to GBR mass bleaching.

Remaining uncertainties

We present analyses and interpretations that are as robust as possible given currently available data and methods. However, several sources of remaining uncertainty mean that future reconstructions of past Coral Sea and GBR SSTs could differ from those presented here. Although bias corrections are applied to observational SST datasets such as ERSST and HadISST, these datasets probably retain biases, especially for the period during and before 1945 (ref. 41 ), and these may not be fully accounted for in the uncertainty estimates 42 . Because our reconstructions are calibrated directly to these datasets, future observational-bias corrections are likely to improve proxy-based reconstructions.

Reconstructions of SST that use coral δ 18 O records may be susceptible to the influence of changes in the coral δ 18 O–SST relationship on time periods longer than the instrumental training period, along with non-SST changes in the δ 18 O of seawater, which can covary with salinity. As such, new coral records of temperature-sensitive trace-element ratios such as Sr/Ca, Li/Mg or U/Ca may prove influential in future efforts to distinguish between changes in past temperature and hydroclimate. Owing to the limited availability of multi-century coral data from within the GBR itself, the reconstructed low-frequency variability of GBR SSTs in recent centuries is likely to change as more temperature proxy data become available. It is also likely that new sub-annual resolution records would aid in removing potential signal damping or bias from our use of some annual-resolution records to reconstruct seasonal SSTAs.

Ecological consequences

With global warming of 0.8–1.1 °C above pre-industrial levels 19 there has been a marked increase in mass coral bleaching globally 43 . Even limiting global warming to the Paris Agreement’s ambitious 1.5 °C level would be likely to lead to the loss of 70–90% of corals that are on reefs today 44 . If all current international mitigation commitments are implemented, global mean surface temperature is still estimated to increase in the coming decades, with estimates varying between 1.9 °C (ref. 45 ) and 3.2 °C (ref. 46 ) above pre-industrial levels by the end of this century. Global warming above 2 °C would have disastrous consequences for coral ecosystems 19 , 44 and the hundreds of millions of people who currently depend on them.

Coral reefs of the future, if they can persist, are likely to have a different community structure to those in the recent past, probably one with much less diversity in coral species 4 . This is because mass bleaching events have a differential impact on different coral species. For example, fast-growing branching and tabulate corals are affected more than slower-growing massive species because they have different thermal tolerance 4 . The simplification of reef structures will have adverse impacts on the many thousands of species that rely on the complex three-dimensional structure of reefs 4 . Therefore, even with an ambitious long-term international mitigation goal, the ecological function 4 of the GBR is likely to deteriorate further 5 before it stabilizes.

Coral adaptation and acclimatization may be the only realistic prospect for the conservation of some parts of the GBR this century. However, although adaptation opportunities may be plausible to some extent 47 , they are no panacea because evolutionary changes to fundamental variables such as temperature take decades, if not centuries, to occur, especially in long-lived species such as reef-building corals 48 . There is currently no clear evidence of the real-time evolution of thermally tolerant corals 48 . Most rapid changes depend on a history of exposure to key genetic types and extremes, and there are limitations to genetic adaptation that prevent species-level adaptation to environments outside of their ecological and evolutionary history 19 . Model projections also indicate that rates of coral adaptation are too slow to keep pace with global warming 49 . In a rapidly warming world, the temperature conditions that give rise to mass coral bleaching events are likely to soon become commonplace. So, although we may see some resilience of coral to future marine heat events through acclimatization, thermal refugia are likely to be overwhelmed 50 . Global warming of more than 1.5 °C above pre-industrial levels will probably be catastrophic for coral reefs 44 .

Our new multi-century reconstruction illustrates the exceptional nature of ocean surface warming in the Coral Sea today and the resulting existential risk for the reef-building corals that are the backbone of the GBR. The reconstruction shows that SSTs were relatively cool and stable for hundreds of years, and that recent January–March ocean surface heat in the Coral Sea is unprecedented in at least the past 400 years. The coral colonies and reefs that have lived through the past several centuries, and that yielded the valuable Sr/Ca and δ 18 O data on which our reconstruction is based, are themselves under serious threat. Our analysis of climate-model simulations confirms that human influence is the driver of recent January–March Coral Sea surface warming. Together, the evidence presented in our study indicates that the GBR is in danger. Given this, it is conceivable that UNESCO may in the future reconsider its determination that the iconic GBR is not in danger. In the absence of rapid, coordinated and ambitious global action to combat climate change, we will likely be witness to the demise of one of Earth’s great natural wonders.

Instrumental observations

The Coral Sea and GBR area-averaged monthly SSTAs relative to 1961–90 for January–March are obtained from version 5 of the Extended Reconstructed Sea Surface Temperature dataset (ERSSTv5) 27 . We compare our results using ERSSTv5 with those generated using the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST1.1) 28 . We use only post-1900 instrumental SST observations here. Although gridded datasets have some coverage before 1900, ship-derived temperature data in the region for that period are too sparse to be reliable for calibrating our reconstruction (Supplementary Information section  1.2 ). The regional mean for the GBR is computed using the seven grid-cell locations used by the Australian Bureau of Meteorology (Supplementary Information section  1.1 ). We define the Coral Sea region as the ocean areas inside 4° S–26° S, 142° E–174° E.

Coral-derived temperature proxy data

We use a network of 22 published and publicly available sub-annual and annual resolution temperature-sensitive coral geochemical series (proxies; Fig. 2d , Supplementary Tables 1 and 2 , and Supplementary Fig. 5a–v ) from the western tropical Pacific in our source data region (4° N–27° S, 134° E–184° E) that cover at least the period from 1900 to 1995. Of these 22 series, 16 are δ 18 O, which are in per mil (‰) notation relative to Vienna PeeDee Belemnite (VPDB) 51 ; the remaining six are Sr/Ca series. The coral data are used as predictors in the reconstruction of January–March mean SSTAs in the Coral Sea region. We apply the inverse Rosenblatt transformation 52 , 53 to the coral data to ensure that our reconstruction predictors are normally distributed. Sub-annually resolved series are converted to the annual time step by averaging across the November–April window. This maximizes the detection of the summer peak values, allowing for some inaccuracy in sub-annual dating and the timing of coral skeleton deposition 54 , 55 . A small fraction (less than 0.8%) of missing data is infilled using the regularized expectation maximization (RegEM) algorithm 56 (Supplementary Information section  2.3 ), after which the proxy series are standardized such that each has a mean of zero and a standard deviation of one over their common 1900–1995 period.

Reconstruction method

To produce our Coral Sea reconstruction, we use nested principal component regression 57 (PCR), in which the principal components of the network of 22 coral proxies are used as regressors against the target-region January–March SSTA relative to the 1961–90 average. We perform the reconstructions separately for each nest of proxies, where a nest is a set of proxies that cover the same time period. The longest nest dates back to 1618, when at least two series are available. The nests allow for the use of all coral proxies over the full time period of their coverage. The 96-year portion of the instrumental period (1900–1995) that overlaps with the reconstruction period is used for calibration and evaluation (or equivalently, verification) against observations. We reconstruct regional SSTAs from the principal components of the coral network of δ 18 O and Sr/Ca data, rather than their local SST calibrations, to minimize the number of computational steps and to aid in representing the full reconstruction uncertainty.

Principal component analysis (PCA) is used to reduce the dimensionality of the proxy matrix, as follows. Let P ( t , r ) denote the palaeoclimate-data matrix during the time period t  = 1,..., n at an annual time step for proxy series r  = 1,..., p . PCA is undertaken on this matrix during the calibration period, P cal . We obtain the principal component coefficients matrix P coeff ( r , e ) for principal components e  = 1,..., n PC and principal component scores P score ( t , e ), which are representations of the input matrix P cal in the principal component space. P score is truncated to include n PC,use principal components to form \({P}_{{\rm{score}}}^{{\prime} }\) such that the variance of the proxy network explained by the n PC,use principal components is greater than \({\sigma }_{{\rm{expl}}}^{2}\) (which we set to 95%). Reconstruction tests in which \({\sigma }_{{\rm{expl}}}^{2}\) is varied from 70% to 95% show that our results are not strongly sensitive to this choice, and tests based on lag-one autoregressive noise for \({\sigma }_{{\rm{expl}}}^{2}\) from 50% to 99% further support this choice (Supplementary Information section  3.2 ). These principal components are used as predictors against which the Coral Sea January–March instrumental SSTAs are regressed. We regress the standardized SSTA target data during the calibration period, I cal , against the retained principal components of the predictor data, \({P}_{{\rm{score}}}^{{\prime} }\) :

Thus, we obtain n PC,use estimates of the regression coefficients γ e with gaussian error term ε t  ~  N (0, \({\sigma }_{N}^{2}\) ). The principal components are extended back into the pre-instrumental period by multiplying the entire proxy matrix P ( t , p ) with the truncated principal component coefficient matrix \({P}_{{\rm{coeff}}}^{{\prime} }\) ( t , e ) to obtain \({Q}_{{\rm{coeff}}}^{{\prime} }\) :

The reconstruction proceeds with the fitted regression coefficients γ e and extended coefficient matrix \({Q}_{{\rm{coeff}}}^{{\prime} }\) to obtain a reconstruction time series R m ( t ) for a given nest of proxy series

The standardized reconstruction R m ( t ) is then calibrated to the instrumental data such that the standard deviation and mean of the reconstruction and target during the calibration interval are equal. As well as obtaining reconstructions for each nest of available proxies, we compute stitched reconstructions S c ( t ) for each calibration period c , which include at each time step the reconstructed data for the proxy nest with maximum coefficient of efficiency 58 , 59 (Supplementary Information section  3.1 ). This procedure is performed for contiguous calibration intervals between 60 and 80 years duration between 1900 and 1995, with interval width and location increments of two years, reserving the remaining data in the overlapping period for independent evaluation, and for all proxy nests. The reconstruction error is modelled with a lag-one autoregressive process fitted to the residuals. We evaluate the capacity of our reconstruction method to achieve spurious skill from overfitting by performing a test in which we replace the coral data with synthetic noise (Supplementary Information section  3.2i ). We find that reconstructions based on synthetic noise achieve extremely low or zero skill and as more noise principal components are included in the regression, the evaluation metrics indicate declining skill. Our reconstruction and evaluation methods therefore guard against the potential for spurious skill.

Pseudo-proxy reconstructions

Our reconstruction method is further evaluated by using a pseudo-proxy modelling approach based on the Community Earth System Model (CESM) Last Millennium Experiment (LME) 60 , for which there are 13 full-forcing ensemble members covering the period 850–2005. We use the pseudo-proxy reconstructions to evaluate our reconstruction method and coral network in a fully coupled climate-model environment. We form pseudo-proxies by extracting from each LME ensemble member the SST and sea surface salinity (SSS) from the 1.5° × 1.5° grid cell located nearest to our coral data. We then apply proxy system models in the form of linear regression models, basing δ 18 O on both SST and SSS, and Sr/Ca on SST only (Supplementary Information section  3.3 ). We set the spatial and temporal availability of the pseudo-coral network to match that of the coral network. We then apply our PCR reconstruction and evaluation procedure to the pseudo-proxy network, taking advantage of the availability of the modelled Coral Sea SSTA data across the multi-century period of 1618–2005, which allows for the evaluation of the pseudo-proxy reconstruction over this entire time period. We first test our method using a ‘perfect proxy’ approach (with no proxy measurement error) before superimposing synthetic noise on the pseudo-proxy time series, evaluating our methodology at two separate levels of measurement error, quantified by signal-to-noise ratios of 1.0 and 4.0. The evaluation metrics for these tests indicate that our coral network and reconstruction method obtain skilful reconstructions of Coral Sea SSTAs in the climate-model environment (Supplementary Figs. 17b , 18 , 20b , 21 , 22b and 23 ).

Comparison with independent coral datasets

We use two multi-century five-year-resolution coral series from the central GBR 23 , 24 (Fig. 2b and Supplementary Fig. 24 ) and a network of sub-annual and annual resolution modern coral series (dated from 1900 onwards but not covering the full 1900–1995 period) from 44 sites in the GBR (Supplementary Information section  4.2 ) for independent evaluation of coral-derived evidence for warming in the region. We estimate five-year GBR SSTAs (Fig. 2b ) by aligning the post-1900 mean and variance of the proxy and instrumental (ERSSTv5) data.

Reconstruction sensitivity to non-SST influences

Of the 22 available coral series, 16 are records of δ 18 O, a widely used measure of the ratio of the stable isotopes 18 O and 16 O. In the tropical Pacific Ocean, δ 18 O is significantly correlated with SST 61 , 62 , 63 , 64 . Coral δ 18 O is also sensitive to the δ 18 O of seawater 65 , which can reflect advection of different water masses and/or changes in freshwater input, such as from riverine sources or precipitation, which in turn co-vary with SSS. Thus, it is generally considered that the main non-SST contributions to coral δ 18 O are processes that co-vary with SSS 62 , 66 . Our methodology minimizes the influence of non-temperature impacts on the reconstruction by exploiting the contrast in spatial heterogeneity between SST and SSS in January–March (Supplementary Information section  5.1 ). SSS is spatially inhomogeneous in the tropical Pacific 66 , 67 , leading to low coherence in SSS signals across our coral network. By contrast, the strong and coherent SST signal across our coral network locations and the Coral Sea region leads to principal components that are strongly representative of SST variations. This produces a skilful reconstruction of SST, as determined by evaluation against independent observations, and low correlations with SSS across the Coral Sea region (Supplementary Fig. 31 ).

Although the likelihood of non-SST influences on our SST reconstruction is low, we nonetheless test the sensitivity of our reconstruction and its associated interpretations to the possibility of these influences on the coral data. The tests compute the correlations between our best-estimate SSTA reconstruction (highest coefficient of efficiency) and observations of SSS, along with a series of additional reconstructions based on subsets of our coral network. The correlations between our highest coefficient of efficiency January–March Coral Sea SSTA reconstruction and January–March SSS are mapped for the Coral Sea and its neighbouring domain using three instrumental SSS datasets (Supplementary Fig. 31 ). Correlations are not statistically significant over most of the domain. Noting differing spatial correlation patterns between the instrumental SSS datasets 68 , which also cover different time periods (Supplementary Information section  5.1 ), we undertake six sensitivity tests using subsets of the coral network (Supplementary Information section  5.2 ). We use the following combinations of coral series: (1) the full network of 22 δ 18 O and Sr/Ca series (Figs. 2a and 3 ); (2) a subset of the six available Sr/Ca series (Supplementary Figs. 32 – 33 ), to test how the reconstruction is influenced by the inclusion of coral δ 18 O records; (3) a fixed nest subset of the five longest coral series, extending back to at least 1700 (Supplementary Figs. 34 – 35 ), to test for the potential influence of combining series of differing lengths (from our splicing of portions of the best reconstructions from each nest); (4) a subset of the ten coral series that are most strongly correlated with the target (Supplementary Figs. 36 and 37 ), to test how our reconstruction is influenced by the inclusion of coral series that are less strongly correlated with our target; (5) a subset of coral series that excludes the six records that are reported to potentially include biological mediation or non-climatic effects, or have low correlation with the target (Supplementary Figs. 38 and 39 ), to test their influence on the reconstruction; and (6) a network perturbation test comprising 22 separate subsets of proxies, in which proxy records are added incrementally in order of highest to lowest correlation with the target, starting with a single coral series and increasing the number of included proxies to all 22 series in our network (Supplementary Information section  5.2.5 ), to systematically quantify the influence of gradually including more coral datasets on our reconstruction and its interpretations.

The evaluation metrics (Fig. 2c and Supplementary Figs. 32b , 34b , 36b and 38b ) indicate a skilful reconstruction back to 1618 for the reconstructions based on the Full, Sr/Ca only, Long, Best-10 and OmitBioMed networks. These reconstructions explain 82.7%, 80.6%, 77.6%, 79.8% and 80.4% (R-squared values) of the variance in January–March SSTAs, respectively, in the independent evaluation periods (using ERSSTv5b). All coral subsets in the network perturbation test produce skilful reconstructions (Supplementary Fig. 40 ). The highest-skill reconstructions for all subsets in the network perturbation test align with our key interpretations (Supplementary Figs. 41 and 42 ). Together, our sensitivity tests show that the coral network, observational data and reconstruction methodology are a sound basis for reconstructing Coral Sea January–March SSTAs in past centuries and contextualizing recent high-SST events ( Supplementary Information ).

Climate-model attribution ensembles and experiments

The multi-model attribution analysis used here is based on simulations from CMIP6. We analyse simulations from the historical experiment (including natural and anthropogenic influences for 1850–2014) and the historical-natural experiment (natural-only forcings for 1850–2014). We select climate models for which monthly surface temperature is available in at least three historical and historical-natural simulations (Supplementary Table 5 ). All model simulations are interpolated to a common regular 1.5° × 1.5° latitude–longitude grid. January–March SSTAs relative to 1961–90 are calculated for each simulation. The full historical all-forcings ensemble is composed of 14 models with 268 simulations for 1850–2014. The natural-only ensemble is composed of the same 14 models with 95 individual simulations. A subset of climate models in the CMIP6 ensemble are considered by the science community to be ‘too hot’, simulating warming in response to increased atmospheric carbon dioxide concentrations that is larger than that supported by independent evidence 31 . We omit these models from our analysis by including only models with a transient climate response in the ‘likely’ range 31 of 1.4–2.2 °C. Our results are not strongly sensitive to this selection (Supplementary Information section  6.3 ). The ten remaining models yield a total of 25,410 years from 154 historical ensemble members and 7,095 years from 43 historical-natural ensemble members. We weight the models equally in our analysis using bootstrap sampling. We report linear trends based on simple linear regression models fitted with ordinary least squares. The statistical significance of linear trends is assessed using the Spearman’s rank correlation test 69 .

Time of emergence of the anthropogenic impact

We assess the anthropogenic influence on SSTAs in the Coral Sea region by starting with the assumption that any anthropogenic influence on SSTAs in the Coral Sea is indistinguishable from natural variability at the commencement of the model experiments. We measure the impact of anthropogenic influence on the climate in the region using a signal-to-noise approach 32 , 70 . We calculate the anthropogenic ‘signal’ as the mean of the difference between the smoothed (using a 41-year Lowess filter) modelled historical Coral Sea SSTA and the mean smoothed modelled historical-natural SSTA. Our ‘noise’ is the standard deviation of the difference between the modelled historical SSTA and its smoothed time series (Supplementary Information section  6 ).

Methods additionally rely on Supplementary Information and refs. 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 .

Data availability

The ERSSTv5 instrumental SST data are available from the US National Oceanic and Atmospheric Administration at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html . The HadISST1.1 data are available from the UK Met Office at https://www.metoffice.gov.uk/hadobs/hadisst/ . The original coral palaeoclimate data are available at the links provided in Supplementary Table 2 . Land areas for maps are obtained from the Mapping Toolbox v.23.2 in Matlab v.2023b and the Global Self-consistent, Hierarchical, High-resolution Geography (GSHHS) Database at https://www.soest.hawaii.edu/pwessel/gshhg/ through the m_map toolbox by R. Pawlowicz, available at https://www.eoas.ubc.ca/%7Erich/map.html . Prepared data from the coral geochemical series, reconstructions and climate models that support the findings of this study are available at: https://doi.org/10.24433/CO.4883292.v1 .

Code availability

The code that supports the findings of this study is available and can be run at : https://doi.org/10.24433/CO.4883292.v1 .

Australian Institute of Marine Science. Long-Term Monitoring Program. https://www.aims.gov.au/research-topics/monitoring-and-discovery/monitoring-great-barrier-reef/long-term-monitoring-program (2024).

Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543 , 373–377 (2017).

Article   ADS   CAS   PubMed   Google Scholar  

Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50 , 839–866 (1999).

Google Scholar  

Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556 , 492–496 (2018).

Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report 2019 (Great Barrier Reef Marine Park Authority, 2019).

Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546 , 82–90 (2017).

Davis, K. L., Colefax, A. P., Tucker, J. P., Kelaher, B. P. & Santos, I. R. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Commun. Earth Environ. 2 , 105 (2021).

Article   ADS   Google Scholar  

Westcott, D. A. et al. Relative efficacy of three approaches to mitigate Crown-of-Thorns Starfish outbreaks on Australia’s Great Barrier Reef. Sci. Rep. 10 , 12594 (2020).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Mellin, C. et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Chang. Biol. 25 , 2431–2445 (2019).

Article   ADS   PubMed   Google Scholar  

Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293 , 629–637 (2001).

Article   CAS   PubMed   Google Scholar  

Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129 , 279–303 (1989).

Article   Google Scholar  

DeCarlo, T. M. et al. Acclimatization of massive reef-building corals to consecutive heatwaves. Proc. Biol. Sci. 286 , 20190235 (2019).

PubMed   PubMed Central   Google Scholar  

McGowan, H. & Theobald, A. ENSO weather and coral bleaching on the Great Barrier Reef, Australia. Geophys. Res. Lett. 44 , 10,601–10,607 (2017).

Zhao, W., Huang, Y., Siems, S. & Manton, M. The role of clouds in coral bleaching events over the Great Barrier Reef. Geophys. Res. Lett. 48 , e2021GL093936 (2021).

Oxley, W. G., Emslie, M., Muir, P. & Thompson, A. Marine Surveys Undertaken in the Lihou Reef National Nature Reserve (Australian Institute of Marine Science, 2004).

DeCarlo, T. M. & Harrison, H. B. An enigmatic decoupling between heat stress and coral bleaching on the Great Barrier Reef. PeerJ 7 , e7473 (2019).

Article   PubMed   PubMed Central   Google Scholar  

UNESCO World Heritage Committee. Extended 44th Session of the World Heritage Committee, Fuzhou (China) 16–31 July 2021 . Draft decision 44 COM 7B.90. https://whc.unesco.org/document/188005 (UNESCO, 2021).

UNESCO World Heritage Committee. Extended 45th Session of the World Heritage Committee, Riyadh (Saudi Arabia) 10–25 September 2023 . Decision 45 COM 7B.13. https://whc.unesco.org/document/199654 (UNESCO, 2023).

IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

Kamenos, N. A. & Hennige, S. J. Reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci. 5 , 283 (2018).

Hoegh-Guldberg, O. et al. Commentary: reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci. 6 , 86 (2019).

DeCarlo, T. M. Commentary: reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci. 7 , 30 (2020).

Hendy, E. J. et al. Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science 295 , 1511–1514 (2002).

Calvo, E. et al. Interdecadal climate variability in the Coral Sea since 1708 A.D. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248 , 190–201 (2007).

Zinke, J. et al. North Flinders Reef (Coral Sea, Australia) Porites sp. corals as a candidate global boundary stratotype section and point for the Anthropocene series. Anthropocene Rev. 10 , 201–224 (2023).

Spady, B. L. et al. Global Coral Bleaching Database (NCEI Accession 0228498) (NOAA National Centers for Environmental Information, 2022); https://www.ncei.noaa.gov/archive/accession/0228498 .

Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 30 , 8179–8205 (2017).

Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108 , 4407 (2003).

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 , 1937–1958 (2016).

Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9 , 3685–3697 (2016).

Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605 , 26–29 (2022).

Hawkins, E. et al. Observed emergence of the climate change signal: from the familiar to the unknown. Geophys. Res. Lett. 47 , e2019GL086259 (2020).

Gagan, M. K. et al. Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279 , 1014–1018 (1998).

Arzey, A. K. et al. Coral skeletal proxy records database for the Great Barrier Reef, Australia. Preprint at Earth Syst. Sci. Data https://doi.org/10.5194/essd-2024-159 (2024).

Brenner, L. D. et al. Coral record of Younger Dryas Chronozone warmth on the Great Barrier Reef. Paleoceanogr. Paleoclimatol. 35 , e2020PA003962 (2020).

Furnas, M. J. & Mitchell, A. W. Nutrient inputs into the central Great Barrier Reef (Australia) from subsurface intrusions of Coral Sea waters: a two-dimensional displacement model. Cont. Shelf Res. 16 , 1127–1148 (1996).

Wolanski, E., Andutta, F., Deleersnijder, E., Li, Y. & Thomas, C. J. The Gulf of Carpentaria heated Torres Strait and the Northern Great Barrier Reef during the 2016 mass coral bleaching event. Estuar. Coast. Shelf Sci. 194 , 172–181 (2017).

Oliver, E. C. J. & Holbrook, N. J. Extending our understanding of South Pacific gyre ‘spin-up’: modeling the East Australian Current in a future climate. J. Geophys. Res. Oceans 119 , 2788–2805 (2014).

DeCarlo, T. M. et al. Nutrient-supplying ocean currents modulate coral bleaching susceptibility. Sci. Adv. 6 , eabc5493 (2020).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3 , 160–164 (2013).

Article   ADS   CAS   Google Scholar  

Chan, D. & Huybers, P. Correcting observational biases in sea surface temperature observations removes anomalous warmth during World War II. J. Clim. 34 , 4585–4602 (2021).

Chan, D., Kent, E. C., Berry, D. I. & Huybers, P. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571 , 393–397 (2019).

Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359 , 80–83 (2018).

Hoegh-Guldberg, O. et al. Chapter 3: Impacts of 1.5°C global warming on natural and human systems. In Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (IPCC, 2018).

Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604 , 304–309 (2022).

Matthews, H. D. & Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 376 , 1404–1409 (2022).

Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6 , e5347 (2018).

Hughes, T. P., Baird, A. H., Morrison, T. H. & Torda, G. Principles for coral reef restoration in the anthropocene. One Earth 6 , 656–665 (2023).

Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Chang. 11 , 537–542 (2021).

Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. K. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLOS Clim. 1 , e0000004 (2022).

Coplen, T. B. Discontinuance of SMOW and PDB. Nature 375 , 285 (1995).

van Albada, S. J. & Robinson, P. A. Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability. J. Neurosci. Methods 161 , 205–211 (2007).

Article   PubMed   Google Scholar  

Emile-Geay, J. & Tingley, M. Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies. Clim. Past 12 , 31–50 (2016).

Barnes, D. J., Taylor, R. B. & Lough, J. M. On the inclusion of trace materials into massive coral skeletons. Part II: distortions in skeletal records of annual climate cycles due to growth processes. J. Exp. Mar. Biol. Ecol. 194 , 251–275 (1995).

Article   CAS   Google Scholar  

Gagan, M. K., Dunbar, G. B. & Suzuki, A. The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ 18 O paleothermometry. Paleoceanogr. Paleoclimatol. 27 , PA1203 (2012).

ADS   Google Scholar  

Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14 , 853–871 (2001).

PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12 , 643–649 (2019).

Cook, E. R., Briffa, K. R. & Jones, P. D. Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int. J. Climatol. 14 , 379–402 (1994).

Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I − a discussion of principles. J. Hydrol. 10 , 282–290 (1970).

Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 97 , 735–754 (2016).

Evans, M. N., Kaplan, A. & Cane, M. A. Optimal sites for coral-based reconstruction of global sea surface temperature. Paleoceanogr. Paleoclimatol. 13 , 502–516 (1998).

Russon, T., Tudhope, A. W., Hegerl, G. C., Collins, M. & Tindall, J. Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: Implications for interpreting coral stable oxygen isotope records of ENSO. Clim. Past 9 , 1543–1557 (2013).

PAGES Hydro2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past 13 , 1851–1900 (2017).

Freund, M. B. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12 , 450–455 (2019).

Gagan, M. K. et al. New views of tropical paleoclimates from corals. Quat. Sci. Rev. 19 , 45–64 (2000).

Thompson, D. M., Ault, T. R., Evans, M. N., Cole, J. E. & Emile-Geay, J. Comparison of observed and simulated tropical climate trends using a forward model of coral δ 18 O. Geophys. Res. Lett. 38 , L14706 (2011).

LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33 , L12604 (2006).

Reed, E. V., Thompson, D. M. & Anchukaitis, K. J. Coral-based sea surface salinity reconstructions and the role of observational uncertainties in inferred variability and trends. Paleoceanogr. Paleoclimatol. 37 , e2021PA004371 (2022).

Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., Sushama, L. & St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 368 , 117–130 (2009).

Mahlstein, I., Hegerl, G. & Solomon, S. Emerging local warming signals in observational data. Geophys. Res. Lett. 39 , L21711 (2012).

Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37 , 2211–2232 (2017).

Huang, B. et al. Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Clim. 33 , 1351–1379 (2020).

Druffel, E. R. M. & Griffin, S. Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. J. Geophys. Res. 104 , 23607–23613 (1999).

DeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K. & Shen, C.-C. Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nat. Clim. Change 2 , 799–804 (2012).

Quinn, T. et al. A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal SST variability in the southwest Pacific since 1657. Paleoceanography 13 , 412–426 (1998).

Quinn, T. M., Crowley, T. J. & Taylor, F. W. New stable isotope results from a 173-year coral from Espiritu Santo, Vanuatu. Geophys. Res. Lett. 23 , 3413–3416 (1996).

Alibert, C. & Kinsley, L. A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J. Geophys. Res. Oceans 113 , C04008 (2008).

Tudhope, A. W. et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291 , 1511–1517 (2001).

Urban, F. E., Cole, J. E. & Overpeck, J. T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407 , 989–993 (2000).

Guilderson, T. P. & Schrag, D. P. Reliability of coral isotope records from the western Pacific warm pool: A comparison using age-optimized records. Paleoceanography 14 , 457–464 (1999).

Quinn, T. M., Taylor, F. W. & Crowley, T. J. Coral-based climate variability in the Western Pacific Warm Pool since 1867. J. Geophys. Res. 111 , C11006 (2006).

Gorman, M. K. et al. A coral-based reconstruction of sea surface salinity at Sabine Bank, Vanuatu from 1842 to 2007 CE. Paleoceanography 27 , PA3226 (2012).

Bagnato, S., Linsley, B. K., Howe, S. S., Wellington, G. M. & Salinger, J. Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region. Geochem. Geophys. Geosyst. 6 , Q06001 (2005).

Linsley, B. K. et al. Tracking the extent of the South Pacific Convergence Zone since the early 1600s. Geochem. Geophys. Geosyst. 7 , Q05003 (2006).

Cole, J. E., Fairbanks, R. G. & Shen, G. T. Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science 260 , 1790–1793 (1993).

Dassié, E. P. et al. A Fiji multi-coral δ 18 O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region. Paleoceanography 29 , 1196–1213 (2014).

Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31 , 6967–6983 (2018).

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 15 , 779–808 (2019).

Cheng, L. et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 33 , 10357–10381 (2020).

Thompson, D. M. et al. Identifying hydro‐sensitive coral δ18O records for improved high‐resolution temperature and salinity reconstructions. Geophys. Res. Lett. 49 , e2021GL096153 (2022).

Wu, Y., Fallon, S. J., Cantin, N. E. & Lough, J. M. Assessing multiproxy approaches (Sr/Ca, U/Ca, Li/Mg, and B/Mg) to reconstruct sea surface temperature from coral skeletons throughout the Great Barrier Reef. Sci. Total Environ. 786 , 147393 (2021).

Sadler, J., Webb, G. E., Leonard, N. D., Nothdurft, L. D. & Clark, T. R. Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef. Paleoceanography 31 , 1395–1408 (2016).

Roche, R. C. et al. Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef. Holocene 24 , 885–897 (2014).

Reed, E. V., Cole, J. E., Lough, J. M., Thompson, D. & Cantin, N. E. Linking climate variability and growth in coral skeletal records from the Great Barrier Reef. Coral Reefs 38 , 29–43 (2019).

Razak, T. B. et al. Use of skeletal Sr/Ca ratios to determine growth patterns in a branching coral Isopora palifera. Mar. Biol. 164 , 96 (2017).

Marshall, J. F. Decadal-scale, High Resolution Records of Sea Surface Temperature in the Eastern Indian and South Western Pacific Oceans from Proxy Records of the Strontium/calcium Ratio of Massive Porites Corals PhD thesis, Australian National Univ. (2000).

Marshall, J. F. & McCulloch, M. T. An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim. Cosmochim. Acta 66 , 3263–3280 (2002).

Gagan, M. K. et al. Coral oxygen isotope evidence for recent groundwater fluxes to the Australian Great Barrier Reef. Geophys. Res. Lett. 29 , 43-1–43-4 (2002).

D’Olivo, J. P., Sinclair, D. J., Rankenburg, K. & McCulloch, M. T. A universal multi-trace element calibration for reconstructing sea surface temperatures from long-lived Porites corals: Removing ‘vital-effects’. Geochim. Cosmochim. Acta 239 , 109–135 (2018).

Fallon, S. J., McCulloch, M. T. & Alibert, C. Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22 , 389–404 (2003).

Brenner, L. D., Linsley, B. K. & Potts, D. C. A modern Sr/Ca-δ 18 O-sea surface temperature calibration for Isopora corals on the Great Barrier Reef. Paleoceanography 32 , 182–194 (2017).

Alibert, C. et al. Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim. Cosmochim. Acta 67 , 231–246 (2003).

Murty, S. A. et al. Spatial and temporal robustness of Sr/Ca-SST calibrations in Red Sea corals: Evidence for influence of mean annual temperature on calibration slopes. Paleoceanogr. Paleoclimatol. 33 , 443–456 (2018).

Sayani, H. R., Cobb, K. M., DeLong, K., Hitt, N. T. & Druffel, E. R. M. Intercolony δ 18 O and Sr/Ca variability among Porites spp. corals at Palmyra Atoll: Toward more robust coral-based estimates of climate. Geochem. Geophys. Geosyst. 20 , 5270–5284 (2019).

Otto, F. E. L. Geert Jan van Oldenborgh 1961–2021. Nat. Clim. Chang. 11 , 1017 (2021).

Download references

Acknowledgements

We acknowledge the originators of the coral data cited in Supplementary Tables 1 and 2 ; S. E. Perkins-Kirkpatrick and the deceased G. J. van Oldenborgh 105 for contributions to an earlier version of this manuscript; E. P. Dassié and J. Zinke for discussions and data; R. Neukom for advice on an earlier version of the reconstruction code; and B. Trewin and K. Braganza for advice about the Bureau of Meteorology GBR SST time series. B.J.H. and H.V.M. acknowledge support from an Australian Research Council (ARC) SRIEAS grant, Securing Antarctica’s Environmental Future (SR200100005), and ARC Discovery Project DP200100206. A.D.K. acknowledges support from an ARC DECRA (DE180100638) and the Australian government’s National Environmental Science Program. B.J.H. and A.D.K. acknowledge an affiliation with the ARC Centre of Excellence for Climate Extremes (CE170100023). H.V.M. acknowledges support from an ARC Future Fellowship (FT140100286). A.K.A. acknowledges support from an Australian government research training program scholarship and an AINSE postgraduate research award. Funding was provided to B.K.L. by the Vetlesen Foundation through a gift to the Lamont-Doherty Earth Observatory. Grants to B.K.L. enabled the generation of coral oxygen isotope and Sr/Ca data from Fiji that were used in our reconstruction (US National Science Foundation OCE-0318296 and ATM-9901649 and US National Oceanic and Atmospheric Administration NA96GP0406). We acknowledge the support of the NCI facility in Australia and the World Climate Research Programme’s working group on coupled modelling, which is responsible for CMIP. We thank the climate-modelling groups for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led the development of software infrastructure in partnership with the Global Organisation for Earth System Science Portals.

Author information

Authors and affiliations.

Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia

Benjamin J. Henley, Helen V. McGregor & Ariella K. Arzey

Securing Antarctica’s Environmental Future, University of Wollongong, Wollongong, New South Wales, Australia

School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia

Benjamin J. Henley

School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia

Andrew D. King & David J. Karoly

ARC Centre of Excellence for Climate Extremes, University of Melbourne, Parkville, Victoria, Australia

Andrew D. King

School of the Environment, The University of Queensland, Brisbane, Queensland, Australia

Ove Hoegh-Guldberg

Australian Institute of Marine Science, Townsville, Queensland, Australia

Janice M. Lough

ARC Centre of Excellence for Coral Reef Studies and School of Earth Sciences, University of Western Australia, Crawley, Western Australia, Australia

Thomas M. DeCarlo

Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA

Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA

Braddock K. Linsley

You can also search for this author in PubMed   Google Scholar

Contributions

B.J.H., H.V.M. and A.D.K. conceived the study and developed the methodology. B.J.H. did most of the analysis. A.K.A. contributed analysis of modern coral data (Supplementary Information section  4.2 ). T.M.D. contributed analysis of instrumental data coverage (Supplementary Information section  1.2 ). B.K.L. contributed sub-annual coral data. B.J.H. and H.V.M. led the preparation of the manuscript, with contributions from A.D.K., O.H.-G., A.K.A., D.J.K., J.M.L., T.M.D. and B.K.L. Generative artificial intelligence was not used in any aspect of this study or manuscript.

Corresponding author

Correspondence to Benjamin J. Henley .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Simon Michel, Miriam Pfeiffer, Claudia Tebaldi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information ., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Henley, B.J., McGregor, H.V., King, A.D. et al. Highest ocean heat in four centuries places Great Barrier Reef in danger. Nature 632 , 320–326 (2024). https://doi.org/10.1038/s41586-024-07672-x

Download citation

Received : 02 November 2022

Accepted : 04 June 2024

Published : 07 August 2024

Issue Date : 08 August 2024

DOI : https://doi.org/10.1038/s41586-024-07672-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Great barrier reef’s temperature soars to 400-year high.

  • Jeff Tollefson

Nature (2024)

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

research paper on empirical

Santhy dewi Pillai

  • Open University Malaysia

Enhancing Critical Thinking Skills for Slow Learners: A Review of Empirical Studies?

Most recent answer.

research paper on empirical

Top contributors to discussions in this field

Mahmoud Omid

  • University of Tehran

Nidhal Kamel Taha El-Omari

  • The World Islamic Science and Education University (WISE)

Noureddine Ouerfelli

  • University of Tunis El Manar; Institut Supérieur des Technologies Médicales de Tunis

Ljubomir Jacić

  • Technical College Požarevac

Murtala Ismail Adakawa

  • Bayero University, Kano

Get help with your research

Join ResearchGate to ask questions, get input, and advance your work.

All Answers (5)

research paper on empirical

Similar questions and discussions

  • Asked 5 August 2024

Gabriela De Paz Mejía

  • Asked 31 July 2024

Elizabeth De-Ben Rockson

  • Asked 30 July 2024

Smahia Boudia

  • Asked 10 July 2024

Abraham Paul

  • Asked 22 June 2024

Maria Smith

  • Asked 3 June 2024

Alexander Ohnemus

  • Asked 27 April 2024

Rk Naresh

  • Asked 24 April 2024

Ahmet Fahreddin Uçar

Related Publications

Xun Bu

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Beliefs About Political News in the Run-up to an Election

This paper develops a model of news discernment to explore the influence of elections on the formation of partisan-driven parallel information universes. Using survey data from news quizzes administered during and outside the 2020 U.S. presidential election, the model shows that partisan congruence’s impact on news discernment is substantially amplified during election periods. Outside an election, when faced with a true and a fake news story and asked to select the most likely true story, an individual is 4% more likely to choose the true story if it favors their party; in the days prior to the election, this increases to 11%.

We would like to thank Chiara Aina, Alexey Makarin, Vincent Pons, David Rand, Jesse Shapiro, Francesco Trebbi, Silvia Vannutelli, as well as seminar audiences at Berkeley Haas, Bocconi University, Harvard, MIT Sloan, and Pompeu Fabra for helpful comments and suggestions. We obtained approval from the Columbia University IRB under protocol AAAS3426 and from the MIT COUHES (Exempt ID E-3899). The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

  • data appendix

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

2024, 16th Annual Feldstein Lecture, Cecilia E. Rouse," Lessons for Economists from the Pandemic" cover slide

IMAGES

  1. Empirical Research

    research paper on empirical

  2. ⇉A Review of an Empirical Research Study Essay Example

    research paper on empirical

  3. (PDF) Conducting an Empirical Research Project

    research paper on empirical

  4. Empirical Research in Scientific Human Geography

    research paper on empirical

  5. Empirical Research

    research paper on empirical

  6. APA: Empirical Research Papers

    research paper on empirical

COMMENTS

  1. The Empirical Research Paper: A Guide

    Guidance and resources on how to read, design, and write an empirical research paper or thesis

  2. Empirical Research

    This book introduces readers to methods and strategies for research and provides them with enough knowledge to become discerning, confident consumers of research in writing. Topics covered include: library research, empirical methodology, quantitative research, experimental research, surveys, focus groups, ethnographies, and much more.

  3. Empirical Research

    Hence, empirical research is a method of uncovering empirical evidence. Through the process of gathering valid empirical data, scientists from a variety of fields, ranging from the social to the natural sciences, have to carefully design their methods. This helps to ensure quality and accuracy of data collection and treatment.

  4. PDF University of Michigan Writing the Empirical Social

    Writing the Empirical Social Science Research Paper: A Guide for the Perplexed Abstract paper to be daunting. Yet, when the process is approached in a systematic way, students can become more comfortable with the writing and standard formatting used i an empirical article. Accordingly, the current paper serves as a template for the bu

  5. The Empirical Research Paper: A Guide

    Empirical Research consists of experiments that rely on observation and measurement to provide evidence about phenomena. Empirical research employs rigorous methods to test out theories and hypotheses (expectations) using real data instead of hunches or anecdotal observations.

  6. Empirical Research in the Social Sciences and Education

    Basic information, database tips, and other resources for finding empirical research, especially in Education, Psychology, and the Behavioral/Social Sciences.

  7. Empirical Research: A Comprehensive Guide for Academics

    Empirical research relies on gathering and studying real, observable data. Learn how to conduct empirical research, its advantages and disadvantages, and tips for empirical writing.

  8. Cognitive authority: A scoping review of empirical research. An Annual

    empirical research on cognitive and epistemic authority are called for. While the body of empirical research on CA is already notable, future research is warranted on all levels of CA operationalization, including individual, community, and societal levels, as well as their inter-actions. The notion of CA provides a unique way to

  9. Identifying Empirical Articles

    An empirical research article reports the results of a study that uses data derived from actual observation or experimentation. Empirical research articles are examples of primary research.

  10. Defining Empirical Research

    Characteristics of Empirical Research Emerald Publishing's guide to conducting empirical research identifies a number of common elements to empirical research: A research question, which will determine research objectives. A particular and planned design for the research, which will depend on the question and which will find ways of answering it with appropriate use of resources. The gathering ...

  11. What Is Empirical Research? Definition, Types & Samples in 2024

    Empirical research is defined as any study whose conclusions are exclusively derived from concrete, verifiable evidence. The term empirical basically means that it is guided by scientific experimentation and/or evidence. Likewise, a study is empirical when it uses real-world evidence in investigating its assertions.

  12. The Psychology of Morality: A Review and Analysis of Empirical Studies

    This review aims to examine the "psychology of morality" by considering the research questions and empirical approaches of 1,278 empirical studies published from 1940 through 2017. We subjected these studies to expert content analysis and standardized bibliometric analysis to characterize relevant trends in this body of research.

  13. Writing Empirical Research Papers

    This chapter covers the crucial parts of an empirical research paper common across any type of methodological approach. It discusses a closer examination of these differences and then focuses on the types of empirical research paper common in most social science classes. When it is part of an empirical research paper, the literature review ...

  14. Research Problems and Hypotheses in Empirical Research

    The account in this paper is limited to some important issues concerning research problems and hypotheses in individual, substantive, empirical, and quantitative research studies.

  15. Empirical Research: Definition, Methods, Types and Examples

    Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore "verifiable" evidence. This empirical evidence can be gathered using quantitative market research and qualitative market research methods. For example: A research is being conducted to find out if ...

  16. Home

    Empirical Economics publishes high-quality papers that apply advanced econometric or statistical methods to confront economic theory with observed data. Exemplary topics are treatment effect estimation, policy evaluation, forecasting, and econometric methods. Contributions may focus on the estimation of established relationships between ...

  17. Empirical research

    Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence (the record of one's direct observations or experiences) can be analyzed quantitatively or qualitatively. Quantifying the evidence or making sense of it in qualitative ...

  18. What is "Empirical Research"?

    What is "Empirical Research"? Empirical research is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."

  19. Writing a Research Paper Introduction

    The introduction looks slightly different depending on whether your paper presents the results of original empirical research or constructs an argument by engaging with a variety of sources. The five steps in this article will help you put together an effective introduction for either type of research paper.

  20. Empirical Research Papers

    When you write papers that require data collection (or are based on data someone else has collected), you are writing an empirical research paper or a lab report. Research papers presenting new data have a common template that includes the following sections:

  21. PDF Microsoft Word

    Every paper, however, should include the empirical model that will tested (see below). If the question you wish to address requires (or even benefits from) a formal model, you should start with the simplest model you can think of.

  22. The Empirical Research Paper: A Guide

    Guidance and resources on how to read, design, and write an empirical research paper or thesis

  23. Free APA Journal Articles

    Recently published articles from subdisciplines of psychology covered by more than 90 APA Journals™ publications. For additional free resources (such as article summaries, podcasts, and more), please visit the Highlights in Psychological Research page. Browse and read free articles from APA Journals across the field of psychology, selected by ...

  24. The impact of international logistics performance on import ...

    Finally, according to the analysis of empirical results, this paper puts forward specific suggestions to promote the development of logistics performance and import and export trade, which ...

  25. What are the different types of research papers?

    Learn all you need to know about research papers, what differentiates a research paper from a thesis, and what types of research papers there are.

  26. Highest ocean heat in four centuries places Great Barrier Reef in

    High ocean temperatures that caused mass coral bleaching and mortality on the Great Barrier Reef in the past decade are the warmest in 400 years and are the result of human-caused climate change.

  27. Cognitive authority: A scoping review of empirical research. An Annual

    This article provides a scoping review of 25 years of research on the notion of cognitive authority (CA), examining its conceptualization and empirical examination. The review follows the PRISMA stat...

  28. Enhancing Critical Thinking Skills for Slow Learners: A Review of

    The goal is to provide a an overview of what works best for slow learners to help educators and practitioners implement evidence-based strategies in their teaching practices ising Empirical Studies .

  29. Beliefs About Political News in the Run-up to an Election

    Founded in 1920, the NBER is a private, non-profit, non-partisan organization dedicated to conducting economic research and to disseminating research findings among academics, public policy makers, and business professionals.

  30. Cyber Resilience Act Requirements Standards Mapping

    To facilitate adoption of the CRA provisions, these requirements need to be translated into the form of harmonised standards, with which manufacturers can comply. In support of the standardisation effort, this study attempt to identify the most relevant existing cybersecurity standards for each CRA requirement, analyses the coverage already offered on the intended scope of the requirement and ...