• Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

Math WorksheetsKhan Academy
Math worksheets take forever to hunt down across the internetKhan Academy is your one-stop-shop for practice from arithmetic to calculus
Math worksheets can vary in quality from site to siteEvery Khan Academy question was written by a math expert with a strong education background
Math worksheets can have ads or cost moneyKhan Academy is a nonprofit whose resources are always free to teachers and learners – no ads, no subscriptions
Printing math worksheets use up a significant amount of paper and are hard to distribute during virtual learningKhan Academy practice requires no paper and can be distributed whether your students are in-person or online
Math worksheets can lead to cheating or a lack of differentiation since every student works on the same questionsKhan Academy has a full question bank to draw from, ensuring that each student works on different questions – and at their perfect skill level
Math worksheets can slow down student learning since they need to wait for feedbackKhan Academy gives instant feedback after every answer – including hints and video support if students are stuck
Math worksheets take up time to collect and take up valuable planning time to gradeKhan Academy questions are graded instantly and automatically for you

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

  • Our Mission

6 Tips for Teaching Math Problem-Solving Skills

Solving word problems is tougher than computing with numbers, but elementary teachers can guide students to do the deep thinking involved.

Photo of elementary school teacher with students

A growing concern with students is the ability to problem-solve, especially with complex, multistep problems. Data shows that students struggle more when solving word problems than they do with computation , and so problem-solving should be considered separately from computation. Why?

Consider this. When we’re on the way to a new destination and we plug in our location to a map on our phone, it tells us what lane to be in and takes us around any detours or collisions, sometimes even buzzing our watch to remind us to turn. When I experience this as a driver, I don’t have to do the thinking. I can think about what I’m going to cook for dinner, not paying much attention to my surroundings other than to follow those directions. If I were to be asked to go there again, I wouldn’t be able to remember, and I would again seek help.

If we can switch to giving students strategies that require them to think instead of giving them too much support throughout the journey to the answer, we may be able to give them the ability to learn the skills to read a map and have several ways to get there.

Here are six ways we can start letting students do this thinking so that they can go through rigorous problem-solving again and again, paving their own way to the solution. 

1. Link problem-solving to reading

When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools like counters or base 10 blocks, drawing a quick sketch of the problem, retelling the story in their own words, etc., can really help them to utilize the skills they already have to make the task less daunting.

We can break these skills into specific short lessons so students have a bank of strategies to try on their own. Here's an example of an anchor chart that they can use for visualizing . Breaking up comprehension into specific skills can increase student independence and help teachers to be much more targeted in their problem-solving instruction. This allows students to build confidence and break down the barriers between reading and math to see they already have so many strengths that are transferable to all problems.

2. Avoid boxing students into choosing a specific operation

It can be so tempting to tell students to look for certain words that might mean a certain operation. This might even be thoroughly successful in kindergarten and first grade, but just like when our map tells us where to go, that limits students from becoming deep thinkers. It also expires once they get into the upper grades, where those words could be in a problem multiple times, creating more confusion when students are trying to follow a rule that may not exist in every problem.

We can encourage a variety of ways to solve problems instead of choosing the operation first. In first grade, a problem might say, “Joceline has 13 stuffed animals and Jordan has 17. How many more does Jordan have?” Some students might choose to subtract, but a lot of students might just count to find the amount in between. If we tell them that “how many more” means to subtract, we’re taking the thinking out of the problem altogether, allowing them to go on autopilot without truly solving the problem or using their comprehension skills to visualize it. 

3. Revisit ‘representation’

The word “representation” can be misleading. It seems like something to do after the process of solving. When students think they have to go straight to solving, they may not realize that they need a step in between to be able to support their understanding of what’s actually happening in the problem first.

Using an anchor chart like one of these ( lower grade , upper grade ) can help students to choose a representation that most closely matches what they’re visualizing in their mind. Once they sketch it out, it can give them a clearer picture of different ways they could solve the problem.

Think about this problem: “Varush went on a trip with his family to his grandmother’s house. It was 710 miles away. On the way there, three people took turns driving. His mom drove 214 miles. His dad drove 358 miles. His older sister drove the rest. How many miles did his sister drive?”

If we were to show this student the anchor chart, they would probably choose a number line or a strip diagram to help them understand what’s happening.

If we tell students they must always draw base 10 blocks in a place value chart, that doesn’t necessarily match the concept of this problem. When we ask students to match our way of thinking, we rob them of critical thinking practice and sometimes confuse them in the process. 

4. Give time to process

Sometimes as educators, we can feel rushed to get to everyone and everything that’s required. When solving a complex problem, students need time to just sit with a problem and wrestle with it, maybe even leaving it and coming back to it after a period of time.

This might mean we need to give them fewer problems but go deeper with those problems we give them. We can also speed up processing time when we allow for collaboration and talk time with peers on problem-solving tasks. 

5. Ask questions that let Students do the thinking

Questions or prompts during problem-solving should be very open-ended to promote thinking. Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking.

These skills are also transferable across content, and students will be reminded, “Good readers and mathematicians reread.” 

6. Spiral concepts so students frequently use problem-solving skills

When students don’t have to switch gears in between concepts, they’re not truly using deep problem-solving skills. They already kind of know what operation it might be or that it’s something they have at the forefront of their mind from recent learning. Being intentional within their learning stations and assessments about having a variety of rigorous problem-solving skills will refine their critical thinking abilities while building more and more resilience throughout the school year as they retain content learning in the process. 

Problem-solving skills are so abstract, and it can be tough to pinpoint exactly what students need. Sometimes we have to go slow to go fast. Slowing down and helping students have tools when they get stuck and enabling them to be critical thinkers will prepare them for life and allow them multiple ways to get to their own destination.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Problem Solving

Problem Solving Strategies

Think back to the first problem in this chapter, the ABC Problem . What did you do to solve it? Even if you did not figure it out completely by yourself, you probably worked towards a solution and figured out some things that did not work.

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills.  He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities).  He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985. [1]

George Pólya ca 1973

 In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

  • First, you have to understand the problem.
  • After understanding, then make a plan.
  • Carry out the plan.
  • Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

We have already seen one problem solving strategy, which we call “Wishful Thinking.” Do not be afraid to change the problem! Ask yourself “what if” questions:

  • What if the picture was different?
  • What if the numbers were simpler?
  • What if I just made up some numbers?

You need to be sure to go back to the original problem at the end, but wishful thinking can be a powerful strategy for getting started.

This brings us to the most important problem solving strategy of all:

Problem Solving Strategy 2 (Try Something!). If you are really trying to solve a problem, the whole point is that you do not know what to do right out of the starting gate. You need to just try something! Put pencil to paper (or stylus to screen or chalk to board or whatever!) and try something. This is often an important step in understanding the problem; just mess around with it a bit to understand the situation and figure out what is going on.

And equally important: If what you tried first does not work, try something else! Play around with the problem until you have a feel for what is going on.

Problem 2 (Payback)

Last week, Alex borrowed money from several of his friends. He finally got paid at work, so he brought cash to school to pay back his debts. First he saw Brianna, and he gave her 1/4 of the money he had brought to school. Then Alex saw Chris and gave him 1/3 of what he had left after paying Brianna. Finally, Alex saw David and gave him 1/2 of what he had remaining. Who got the most money from Alex?

Think/Pair/Share

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What did you figure out about the problem?

This problem lends itself to two particular strategies. Did you try either of these as you worked on the problem? If not, read about the strategy and then try it out before watching the solution.

Problem Solving Strategy 3 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric, like this one, thinking visually can help! Can you represent something in the situation by a picture?

Draw a square to represent all of Alex’s money. Then shade 1/4 of the square — that’s what he gave away to Brianna. How can the picture help you finish the problem?

After you have worked on the problem yourself using this strategy (or if you are completely stuck), you can watch someone else’s solution.

Problem Solving Strategy 4 (Make Up Numbers). Part of what makes this problem difficult is that it is about money, but there are no numbers given. That means the numbers must not be important. So just make them up!

You can work forwards: Assume Alex had some specific amount of money when he showed up at school, say $100. Then figure out how much he gives to each person. Or you can work backwards: suppose he has some specific amount left at the end, like $10. Since he gave Chris half of what he had left, that means he had $20 before running into Chris. Now, work backwards and figure out how much each person got.

Watch the solution only after you tried this strategy for yourself.

If you use the “Make Up Numbers” strategy, it is really important to remember what the original problem was asking! You do not want to answer something like “Everyone got $10.” That is not true in the original problem; that is an artifact of the numbers you made up. So after you work everything out, be sure to re-read the problem and answer what was asked!

Problem 3 (Squares on a Chess Board)

How many squares, of any possible size, are on a 8 × 8 chess board? (The answer is not 64… It’s a lot bigger!)

Remember Pólya’s first step is to understand the problem. If you are not sure what is being asked, or why the answer is not just 64, be sure to ask someone!

Think / Pair / Share

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What did you figure out about the problem, even if you have not solved it completely?

It is clear that you want to draw a picture for this problem, but even with the picture it can be hard to know if you have found the correct answer. The numbers get big, and it can be hard to keep track of your work. Your goal at the end is to be absolutely positive that you found the right answer. You should never ask the teacher, “Is this right?” Instead, you should declare, “Here’s my answer, and here is why I know it is correct!”

Problem Solving Strategy 5 (Try a Simpler Problem). Pólya suggested this strategy: “If you can’t solve a problem, then there is an easier problem you can solve: find it.” He also said: “If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?” In this case, an 8 × 8 chess board is pretty big. Can you solve the problem for smaller boards? Like 1 × 1? 2 × 2? 3 × 3?

Of course the ultimate goal is to solve the original problem. But working with smaller boards might give you some insight and help you devise your plan (that is Pólya’s step (2)).

Problem Solving Strategy 6 (Work Systematically). If you are working on simpler problems, it is useful to keep track of what you have figured out and what changes as the problem gets more complicated.

For example, in this problem you might keep track of how many 1 × 1 squares are on each board, how many 2 × 2 squares on are each board, how many 3 × 3 squares are on each board, and so on. You could keep track of the information in a table:

1 0 0 0
4 1 0 0
 9 4 1 0

Problem Solving Strategy 7 (Use Manipulatives to Help You Investigate). Sometimes even drawing a picture may not be enough to help you investigate a problem. Having actual materials that you move around can sometimes help a lot!

For example, in this problem it can be difficult to keep track of which squares you have already counted. You might want to cut out 1 × 1 squares, 2 × 2 squares, 3 × 3 squares, and so on. You can actually move the smaller squares across the chess board in a systematic way, making sure that you count everything once and do not count anything twice.

Problem Solving Strategy 8 (Look for and Explain Patterns). Sometimes the numbers in a problem are so big, there is no way you will actually count everything up by hand. For example, if the problem in this section were about a 100 × 100 chess board, you would not want to go through counting all the squares by hand! It would be much more appealing to find a pattern in the smaller boards and then extend that pattern to solve the problem for a 100 × 100 chess board just with a calculation.

If you have not done so already, extend the table above all the way to an 8 × 8 chess board, filling in all the rows and columns. Use your table to find the total number of squares in an 8 × 8 chess board. Then:

  • Describe all of the patterns you see in the table.
  • Can you explain and justify any of the patterns you see? How can you be sure they will continue?
  • What calculation would you do to find the total number of squares on a 100 × 100 chess board?

(We will come back to this question soon. So if you are not sure right now how to explain and justify the patterns you found, that is OK.)

Problem 4 (Broken Clock)

This clock has been broken into three pieces. If you add the numbers in each piece, the sums are consecutive numbers. ( Consecutive numbers are whole numbers that appear one after the other, such as 1, 2, 3, 4 or 13, 14, 15.)

Can you break another clock into a different number of pieces so that the sums are consecutive numbers? Assume that each piece has at least two numbers and that no number is damaged (e.g. 12 isn’t split into two digits 1 and 2.)

Remember that your first step is to understand the problem. Work out what is going on here. What are the sums of the numbers on each piece? Are they consecutive?

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What progress have you made?

Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

In this case, worrying about the clock and exactly how the pieces break is less important than worrying about finding consecutive numbers that sum to the correct total. Ask yourself:

  • What is the sum of all the numbers on the clock’s face?
  • Can I find two consecutive numbers that give the correct sum? Or four consecutive numbers? Or some other amount?
  • How do I know when I am done? When should I stop looking?

Of course, solving the question about consecutive numbers is not the same as solving the original problem. You have to go back and see if the clock can actually break apart so that each piece gives you one of those consecutive numbers. Maybe you can solve the math problem, but it does not translate into solving the clock problem.

Problem Solving Strategy 10 (Check Your Assumptions). When solving problems, it is easy to limit your thinking by adding extra assumptions that are not in the problem. Be sure you ask yourself: Am I constraining my thinking too much?

In the clock problem, because the first solution has the clock broken radially (all three pieces meet at the center, so it looks like slicing a pie), many people assume that is how the clock must break. But the problem does not require the clock to break radially. It might break into pieces like this:

Were you assuming the clock would break in a specific way? Try to solve the problem now, if you have not already.

  • Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons ↵

Mathematics for Elementary Teachers Copyright © 2018 by Michelle Manes is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

math problem solving for elementary

Problem Solving Activities: 7 Strategies

  • Critical Thinking

math problem solving for elementary

Problem solving can be a daunting aspect of effective mathematics teaching, but it does not have to be! In this post, I share seven strategic ways to integrate problem solving into your everyday math program.

In the middle of our problem solving lesson, my district math coordinator stopped by for a surprise walkthrough. 

I was so excited!

We were in the middle of what I thought was the most brilliant math lesson– teaching my students how to solve problem solving tasks using specific problem solving strategies. 

It was a proud moment for me!

Each week, I presented a new problem solving strategy and the students completed problems that emphasized the strategy. 

Genius right? 

After observing my class, my district coordinator pulled me aside to chat. I was excited to talk to her about my brilliant plan, but she told me I should provide the tasks and let my students come up with ways to solve the problems. Then, as students shared their work, I could revoice the student’s strategies and give them an official name. 

What a crushing blow! Just when I thought I did something special, I find out I did it all wrong. 

I took some time to consider her advice. Once I acknowledged she was right, I was able to make BIG changes to the way I taught problem solving in the classroom. 

When I Finally Saw the Light

To give my students an opportunity to engage in more authentic problem solving which would lead them to use a larger variety of problem solving strategies, I decided to vary the activities and the way I approached problem solving with my students. 

Problem Solving Activities

Here are seven ways to strategically reinforce problem solving skills in your classroom. 

This is an example of seasonal problem solving activities.

Seasonal Problem Solving

Many teachers use word problems as problem solving tasks. Instead, try engaging your students with non-routine tasks that look like word problems but require more than the use of addition, subtraction, multiplication, and division to complete. Seasonal problem solving tasks and daily challenges are a perfect way to celebrate the season and have a little fun too!

Cooperative Problem Solving Tasks

Go cooperative! If you’ve got a few extra minutes, have students work on problem solving tasks in small groups. After working through the task, students create a poster to help explain their solution process and then post their poster around the classroom. Students then complete a gallery walk of the posters in the classroom and provide feedback via sticky notes or during a math talk session.

Notice and Wonder

Before beginning a problem solving task, such as a seasonal problem solving task, conduct a Notice and Wonder session. To do this, ask students what they notice about the problem. Then, ask them what they wonder about the problem. This will give students an opportunity to highlight the unique characteristics and conditions of the problem as they try to make sense of it. 

Want a better experience? Remove the stimulus, or question, and allow students to wonder about the problem. Try it! You’ll gain some great insight into how your students think about a problem.

This is an example of a math starter.

Math Starters

Start your math block with a math starter, critical thinking activities designed to get your students thinking about math and provide opportunities to “sneak” in grade-level content and skills in a fun and engaging way. These tasks are quick, designed to take no more than five minutes, and provide a great way to turn-on your students’ brains. Read more about math starters here ! 

Create your own puzzle box! The puzzle box is a set of puzzles and math challenges I use as fast finisher tasks for my students when they finish an assignment or need an extra challenge. The box can be a file box, file crate, or even a wall chart. It includes a variety of activities so all students can find a challenge that suits their interests and ability level.

Calculators

Use calculators! For some reason, this tool is not one many students get to use frequently; however, it’s important students have a chance to practice using it in the classroom. After all, almost everyone has access to a calculator on their cell phones. There are also some standardized tests that allow students to use them, so it’s important for us to practice using calculators in the classroom. Plus, calculators can be fun learning tools all by themselves!

Three-Act Math Tasks

Use a three-act math task to engage students with a content-focused, real-world problem! These math tasks were created with math modeling in mind– students are presented with a scenario and then given clues and hints to help them solve the problem. There are several sites where you can find these awesome math tasks, including Dan Meyer’s Three-Act Math Tasks and Graham Fletcher’s 3-Acts Lessons . 

Getting the Most from Each of the Problem Solving Activities

When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking. Selecting an initial question and then analyzing a student’s response tells teachers where to go next. 

Ready to jump in? Grab a free set of problem solving challenges like the ones pictured using the form below. 

Which of the problem solving activities will you try first? Respond in the comments below.

math problem solving for elementary

Shametria Routt Banks

math problem solving for elementary

  • Assessment Tools
  • Content and Standards
  • Differentiation
  • Math & Literature
  • Math & Technology
  • Math Routines
  • Math Stations
  • Virtual Learning
  • Writing in Math

You may also like...

math problem solving for elementary

2 Responses

This is a very cool site. I hope it takes off and is well received by teachers. I work in mathematical problem solving and help prepare pre-service teachers in mathematics.

Thank you, Scott! Best wishes to you and your pre-service teachers this year!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

©2024 The Routty Math Teacher.   All Rights Reserved.  Designed by Ashley Hughes.

Privacy overview, grade level.

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

25 Fun Math Problems For Elementary And Middle School (From Easy To Very Hard!)

Fun math problems and brainteasers are loved by mathematicians; they provide an opportunity to apply mathematical knowledge, logic, and problem-solving skills all at once.

In this article, we’ve compiled 25 fun math problems and brainteasers covering various topics and question types. They’re aimed at students in upper elementary (3rd-5th grade) and middle school (6th grade, 7th grade, and 8th grade). We’ve categorized them as:

How should teachers use these math problems?

Teachers could make use of these math problem solving questions in a number of ways. They can:

  • incorporate the questions into a relevant math lesson.
  • set tasks at the beginning of lessons.
  • break up or extend a math worksheet.
  • keep students thinking mathematically after the main lesson has finished.

Some are based on real life or historical math problems, and some include ‘bonus’ math questions to help extend the problem-solving fun! As you read through these problems, think about how you could adjust them to be relevant to your students and their grade level or to practice different math skills. 

These math problems can also be used as introductory puzzles for math games such as those introduced at the following links:

  • Math games for grade 4
  • Middle school math games

25 Fun Math Problems

25 Fun Math Problems

Engage your elementary and middle school students with these fun math problems, suitable for individuals, pairs and small groups! Includes a range of challenge levels to engage all learners.

Math word problems

1. home on time – easy .

Type: Elapsed time, Number, Addition

A movie theater screening starts at 2:35 pm. The movie lasts for 2 hours, 32 minutes after 23 minutes of previews. It takes 20 minutes to get home from the movie theater. What time should you tell your family that you’ll be home?

Answer: 5:50 pm

2. A nugget of truth – mixed

Type: Multiplication Facts, Multiplication, Multiples, Factors, Problem-Solving 

Chicken nuggets come in boxes of 6, 9 or 20, so you can’t order 7 chicken nuggets. How many other impossible quantities can you find (not including fractions or decimals)?

Answer: 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, or 43

There is actually a theorem which can be used to prove that every integer quantity greater than 43 can be ordered.

3. A pet problem – mixed

Type: Number, Problem Solving, Forming and Solving Equations, Simultaneous Equations, Algebra

Eight of my pets aren’t dogs, five aren’t rabbits, and seven aren’t cats. How many pets do I have?

Answer: 10 pets (5 rabbits, 3 cats, 2 dogs)

Looking for more word problems, solutions and explanations? Read our article on word problems for elementary school.

4. the price of things – mixed.

Type: lateral thinking problem

A mouse costs $10, a bee costs $15, and a spider costs $20. Based on this, how much does a duck cost?

Answer: $5 ($2.50 per leg)

Math puzzles

5. a dicey math challenge – easy.

Type: Place value, number, addition, problem-solving

Roll three 6 sided dice to generate three place value digits. What’s the biggest number you can make out of these digits? What’s the smallest number you can make?

Add these two numbers together. What do you get?

Answer: If the digits are the same, the maximum is 666 and the minimum is 111. Then, if you add the numbers together, 666 + 111 = 777. If the digits are different, the maximum is 654 and the minimum is 456. Then, if you add the numbers together, 654 + 456 = 1,110.

Bonus: Who got a different result? Why?

6. PIN problem solving – mixed

Type: Logic, problem solving, reasoning

I’ve forgotten my PIN. Six incorrect attempts locks my account: I’ve used five! Two digits are displayed after each unsuccessful attempt: “2, 0” means 2 digits from that guess are in the PIN, but 0 are in the right place. No two digits in my PIN are the same.

What should my sixth attempt be?

pin math problem

Answer: 6347

7. So many birds – mixed

Type: Triangular Numbers, Sequences, Number, Problem Solving

On the first day of Christmas my true love gave me one gift. On the second day they gave me another pair of gifts plus a copy of what they gave me on day one. On day 3, they gave me three new gifts, plus another copy of everything they’d already given me. If they keep this up, how many gifts will I have after twelve days?

Answer: 364

Bonus: This could be calculated as 1 + (1 + 2) + (1 + 2 + 3) + … but is there an easier way? What percentage of my gifts do I receive on each day?

8. I 8 sum math questions – mixed

Type: Number, Place Value, Addition, Problem Solving, Reasoning

Using only addition and the digit 8, can you make 1,000? You can put 8s together to make 88, for example.

Answer: 888 + 88 + 8 + 8 + 8 = 1,000 Bonus: Which other digits allow you to get 1,000 in this way?

Fraction problems

4 friends entered a math quiz. One answered \frac {1}{5} of the math questions, one answered \frac {1}{10} , one answered \frac{1}{4} , and the other answered \frac{4}{25} . What percentage of the questions did they answer altogether?

Answer: 71%

10. Ancient problem solving – easy

Type: Fractions, Reasoning, Problem Solving

Ancient Egyptians only used unit fractions (like \frac {1}{2} , \frac{1}{3} or \frac{1}{4} . For \frac {2}{3} they’d write \frac{1}{3} + \frac{1}{3} . How might they write \frac{5}{8} ?

Answer: 

\frac {1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} is correct. So is \frac {1}{2} + \frac{1}{8} (They are both still unit fractions even though they have different denominators.)

Bonus: Which solution is better? Why? Can you find any more? What if subtractions are allowed?

Learn more about unit fractions here .

11. everybody wants a pizza the action – hard.

An infinite number of mathematicians buy pizza. The first wants \frac{1}{2} . The second wants \frac{1}{4} pizza. The third & fourth want \frac{1}{8} and \frac{1}{16} each, and so on. How many pizzas should they order?

Answer: 1 Each successive mathematician wants a slice that is exactly half of what is left:

fractions math problem

12. Shade it black – hard

Type: Fractions, Reasoning, Problem Solving What fraction of this image is shaded black?

another math problem on fractions

Answer:  

Look at the L-shaped part made up of two white and one black squares: 

\frac{1}{3} of this part is shaded. Zoom in on the top-right quarter of the image, which looks exactly the same as the whole image, and use the same reasoning to find what fraction of its L-shaped portion is shaded. Imagine zooming in to do the same thing again and again…

Multiplication and division problems

13. giving is receiving – easy.

Type: Number, Reasoning, Problem Solving

5 people give each other a present. How many presents are given altogether?

14. Sharing is caring – mixed

I have 20 candies. If I share them equally with my friends, there are 2 left over. If one more person joins us, there are 6 candies left. How many friends am I with?

Answer: 6 people altogether (so 5 friends!)

15. Multiplication facts secrets – mixed

Type: Area, 2D Shape, Rectangles

Here are 77 letters:

B Y H R C G N E O E A A H G C U R P U T S A S H H S B O R E O P E E M E E L A T P E F A D P H L TU T I E E O H L E N R Y T I I A G B M T N F C G E I I G

How many different rectangular grids could you arrange all 77 letters into?

Can you reveal the secret message?

Answer: Four: 1 × 77, 77 × 1, 11 × 7 and 7 × 11. If the letters are arranged into one of these, a message appears, reading down each column starting from the top left.

Another math problem on multiplication

Bonus: Can you find any more integers with the same number of factors as 77? What do you notice about these factors (think about prime numbers)? Can you use this system to hide your own messages?

16. Laugh it up – hard

Type: Multiples, Least Common Multiple, Multiplication Facts, Division, Time

One friend jumps every \frac{1}{3} of a minute. Another jumps every 31 seconds. When will they jump together? Answer: After 620 seconds

US lesson slide

Geometry problems

17. pictures of matchstick triangles – easy.

Type: 2D Shapes, Equilateral Triangles, Problem Solving, Reasoning

Look at the matchsticks arranged below. How many equilateral triangles are there?

triangles math problem

Answer: 13 (9 small, 3 medium, 1 large)

Bonus: What if the biggest triangle only had two matchsticks on each side? What if it had four?

18. Dissecting squares – mixed

Type: Reasoning, Problem Solving

What’s the smallest number of straight lines you could draw on this grid such that each square has a line going through it?

grid

19. Make it right – mixed

Type: Pythagorean theorem

This triangle does not agree with Pythagorean theorem. 

Adding, subtracting, multiplying or dividing each of the side lengths by the same whole number can fix it. What is the number?

pythagorean theorem math problem

Answer: 3 

The new side lengths are 3, 4 and 5 and  32 + 42 = 52.

20. A most regular math question – hard

Type: Polygons, 2D Shapes, tessellation, reasoning, problem-solving, patterns

What is the regular polygon with the largest number of sides that will self-tessellate?

Answer: Hexagon.

Regular polygons tessellate if one interior angle is a factor of 360 ° . The interior angle of a hexagon is 120°. This is the largest factor less than 180°.

Problem-solving questions

21. pleased to meet you – easy.

Type: Number Problem, Reasoning, Problem Solving

5 people meet; each shakes everyone else’s hand once. How many handshakes take place?

Person A shakes 4 people’s hands. Person B has already shaken Person A’s hand, so only needs to shake 3 more, and so on.

Bonus: How many handshakes would there be if you did this with your class?

22. All relative – easy

Type: Number, Reasoning, Problem-Solving

When I was twelve my brother was half my age. I’m 40 now, so how old is he?

23. It’s about time – mixed

Type: Time, Reasoning, Problem-Solving

When is “8 + 10 = 6” true?

Answer: When you’re telling the time (8am + 10 hours = 6pm)

24. More than a match – mixed

Type: Reasoning, Problem-Solving, Roman Numerals, Numerical Notation

Here are three matches:

matches math problem

How can you add two more matches, but get eight? Answer: Put the extra two matches in a V shape to make 8 in Roman Numerals:

roman numerals math problem

25. Leonhard’s graph – hard

Type: Reasoning, Problem-Solving, Logic

Leonhard’s town has seven bridges as shown below. Can you find a route around the town that crosses every bridge exactly once?

brainteaser

Answer: No!

This is a classic real life historical math problem solved by mathematician Leonhard Euler (rhymes with “boiler”). The city was Konigsberg in Prussia (now Kaliningrad, Russia). Not being able to find a solution is different from proving that there aren’t any! Euler managed to do this in 1736, practically inventing graph theory in the process.

Math puzzles are everywhere!

Many of these 25 math problems are rooted in real life, from everyday occurrences to historical events. Others are just questions that might arise if you say “what if…?”. The point is that although there are many lists of such problem-solving math questions that you can make use of, with a little bit of experience and inspiration you could create your own on almost any topic – and so could your students. 

For a kick-starter on creating your own math problems, read our article on middle school math problem solving .

READ MORE :

  • Math problems for 3rd graders
  • 4th grade math problems
  • 5th grade math problems
  • 6th Grade Math Problems
  • 7th Grade Math Problems

Do you have students who need extra support in math? Give your students more opportunities to consolidate learning and practice skills through personalized math tutoring with their own dedicated online math tutor. Each student receives differentiated instruction designed to close their individual learning gaps, and scaffolded learning ensures every student learns at the right pace. Lessons are aligned with your state’s standards and assessments, plus you’ll receive regular reports every step of the way. Personalized one-on-one math tutoring programs are available for: – 2nd grade tutoring – 3rd grade tutoring – 4th grade tutoring – 5th grade tutoring – 6th grade tutoring – 7th grade tutoring – 8th grade tutoring Why not learn more about how it works ?

The content in this article was originally written by primary school teacher Tom Briggs and has since been revised and adapted for US schools by math curriculum specialist and former elementary math teacher Katie Keeton.

Related articles

26 Whole Class Math Games: Adaptable For All Students

26 Whole Class Math Games: Adaptable For All Students

10 Fun Thanksgiving Math Activities For All Your Elementary Students

10 Fun Thanksgiving Math Activities For All Your Elementary Students

Free Summer Math Activities Packs For Elementary Teachers

Free Summer Math Activities Packs For Elementary Teachers

Small Whiteboards: 7 Ways To Use Teachers’ Favorite Classroom Resource

Small Whiteboards: 7 Ways To Use Teachers’ Favorite Classroom Resource

Summer Math Activities Grades 1 to 5 Pack [FREE]

Keep math a focus for your students with these fun math games and activities to try over the summer!

The pack includes 4 separate worksheets for each grade, with different games aimed at helping students with the transition into the next grade.

Privacy Overview

University of Cambridge logo white

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

Problem Solving

Problem solving and the new curriculum

Problem solving and the new curriculum

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing excellence in problem solving with young learners

Developing excellence in problem solving with young learners

Using NRICH Tasks to Develop Key Problem-solving Skills

Using NRICH Tasks to Develop Key Problem-solving Skills

Trial and Improvement at KS1

Trial and Improvement at KS1

Trial and Improvement at KS2

Trial and Improvement at KS2

Working Systematically

Working Systematically - Primary teachers

Number Patterns

Number Patterns

Working Backwards at KS1

Working Backwards at KS1

Working Backwards at KS2

Working Backwards at KS2

Reasoning

Visualising at KS1 - Primary teachers

Visualising at KS2

Visualising at KS2 - Primary teachers

Conjecturing and Generalising at KS1

Conjecturing and Generalising at KS1 - Primary teachers

Conjecturing and Generalising at KS2

Conjecturing and Generalising at KS2 - Primary teachers

the Owl Teacher logo

Teaching Problem Solving in Math

  • Freebies , Math , Planning

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Every year my students can be fantastic at math…until they start to see math with words. For some reason, once math gets translated into reading, even my best readers start to panic. There is just something about word problems, or problem-solving, that causes children to think they don’t know how to complete them.

Every year in math, I start off by teaching my students problem-solving skills and strategies. Every year they moan and groan that they know them. Every year – paragraph one above. It was a vicious cycle. I needed something new.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

I put together a problem-solving unit that would focus a bit more on strategies and steps in hopes that that would create problem-solving stars.

The Problem Solving Strategies

First, I wanted to make sure my students all learned the different strategies to solve problems, such as guess-and-check, using visuals (draw a picture, act it out, and modeling it), working backward, and organizational methods (tables, charts, and lists). In the past, I had used worksheet pages that would introduce one and provide the students with plenty of problems practicing that one strategy. I did like that because students could focus more on practicing the strategy itself, but I also wanted students to know when to use it, too, so I made sure they had both to practice.

I provided students with plenty of practice of the strategies, such as in this guess-and-check game.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

There’s also this visuals strategy wheel practice.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

I also provided them with paper dolls and a variety of clothing to create an organized list to determine just how many outfits their “friend” would have.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Then, as I said above, we practiced in a variety of ways to make sure we knew exactly when to use them. I really wanted to make sure they had this down!

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Anyway, after I knew they had down the various strategies and when to use them, then we went into the actual problem-solving steps.

The Problem Solving Steps

I wanted students to understand that when they see a story problem, it isn’t scary. Really, it’s just the equation written out in words in a real-life situation. Then, I provided them with the “keys to success.”

S tep 1 – Understand the Problem.   To help students understand the problem, I provided them with sample problems, and together we did five important things:

  • read the problem carefully
  • restated the problem in our own words
  • crossed out unimportant information
  • circled any important information
  • stated the goal or question to be solved

We did this over and over with example problems.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Once I felt the students had it down, we practiced it in a game of problem-solving relay. Students raced one another to see how quickly they could get down to the nitty-gritty of the word problems. We weren’t solving the problems – yet.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Then, we were on to Step 2 – Make a Plan . We talked about how this was where we were going to choose which strategy we were going to use. We also discussed how this was where we were going to figure out what operation to use. I taught the students Sheila Melton’s operation concept map.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

We talked about how if you know the total and know if it is equal or not, that will determine what operation you are doing. So, we took an example problem, such as:

Sheldon wants to make a cupcake for each of his 28 classmates. He can make 7 cupcakes with one box of cupcake mix. How many boxes will he need to buy?

We started off by asking ourselves, “Do we know the total?” We know there are a total of 28 classmates. So, yes, we are separating. Then, we ask, “Is it equal?” Yes, he wants to make a cupcake for EACH of his classmates. So, we are dividing: 28 divided by 7 = 4. He will need to buy 4 boxes. (I actually went ahead and solved it here – which is the next step, too.)

Step 3 – Solving the problem . We talked about how solving the problem involves the following:

  • taking our time
  • working the problem out
  • showing all our work
  • estimating the answer
  • using thinking strategies

We talked specifically about thinking strategies. Just like in reading, there are thinking strategies in math. I wanted students to be aware that sometimes when we are working on a problem, a particular strategy may not be working, and we may need to switch strategies. We also discussed that sometimes we may need to rethink the problem, to think of related content, or to even start over. We discussed these thinking strategies:

  • switch strategies or try a different one
  • rethink the problem
  • think of related content
  • decide if you need to make changes
  • check your work
  • but most important…don’t give up!

To make sure they were getting in practice utilizing these thinking strategies, I gave each group chart paper with a letter from a fellow “student” (not a real student), and they had to give advice on how to help them solve their problem using the thinking strategies above.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Finally, Step 4 – Check It.   This is the step that students often miss. I wanted to emphasize just how important it is! I went over it with them, discussing that when they check their problems, they should always look for these things:

  • compare your answer to your estimate
  • check for reasonableness
  • check your calculations
  • add the units
  • restate the question in the answer
  • explain how you solved the problem

Then, I gave students practice cards. I provided them with example cards of “students” who had completed their assignments already, and I wanted them to be the teacher. They needed to check the work and make sure it was completed correctly. If it wasn’t, then they needed to tell what they missed and correct it.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

To demonstrate their understanding of the entire unit, we completed an adorable lap book (my first time ever putting together one or even creating one – I was surprised how well it turned out, actually). It was a great way to put everything we discussed in there.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Once we were all done, students were officially Problem Solving S.T.A.R.S. I just reminded students frequently of this acronym.

Stop – Don’t rush with any solution; just take your time and look everything over.

Think – Take your time to think about the problem and solution.

Act  – Act on a strategy and try it out.

Review – Look it over and see if you got all the parts.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Wow, you are a true trooper sticking it out in this lengthy post! To sum up the majority of what I have written here, I have some problem-solving bookmarks FREE to help you remember and to help your students!

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

You can grab these problem-solving bookmarks for FREE by clicking here .

You can do any of these ideas without having to purchase anything. However, if you are looking to save some time and energy, then they are all found in my Math Workshop Problem Solving Unit . The unit is for grade three, but it  may work for other grade levels. The practice problems are all for the early third-grade level.

math problem solving for elementary

  • freebie , Math Workshop , Problem Solving

math problem solving for elementary

FIND IT NOW!

Check me out on tpt.

math problem solving for elementary

CHECK THESE OUT

5TH-GRADE-GROWING-BUNDLE-MATH-WORKSHOP cover

5th Grade Math Workshop Growing Bundle- 9 Units

math problem solving for elementary

Three Types of Rocks and Minerals with Rock Cycle Circle Book

Want to save time?

COPYRIGHT © 2016-2024. The Owl Teacher | Privacy page | Disclosure Page | Shipping | Returns/Refunds

BOGO on EVERYTHING!

How to Use Real-World Problems to Teach Elementary School Math: 6 Tips

math problem solving for elementary

  • Share article

When you think back on elementary school math, do you have fond memories of the countless worksheets you completed on adding fractions or solving division problems? Probably not.

Researchers and educators have been pushing for years for schools to move away from teaching math through a set of equations with no context around them, and towards an approach that pushes kids to use numerical reasoning to solve real problems, mirroring the way that they’ll encounter the use of math as adults.

The strategy is largely about setting kids up for success in the professional world, and educators can lay the groundwork decades earlier, even in kindergarten .

Here are some tips for using a real world problem-solving approach to teaching math to elementary school students.

1. There’s more than one right answer and more than one right method

A “real world task” can be as simple as asking students to think of equations that will get them to a particular “target” number, say, 14. Students could say 7 plus 7 is 14 or they could say 25 minus 11 is 14. Neither answer is better than the other, and that lesson teaches kids that there are multiple ways to use math to solve problems.

2. Give kids a chance to explain their thinking

The process you use to solve a real world math problem can be just as important as arriving at the correct answer, said Robbi Berry, who teaches 5th grade in Las Cruces, N.M. Her students have learned not to ask her if a particular answer is correct, she said, because she’ll turn the question back on them, asking them to explain how they know that it is right. She also gives her students a chance to explain to one another how they arrived at a particular solution, “We always share our strategies so that the kids can see the different ways” to arrive at an answer, she said. Students get excited, she said, when one of their classmates comes up with an approach they never would have thought of. “Math is creative,” Berry said. “It’s not just learning and memorizing.”

3. Be willing to deal with some off-the-wall answers

Problem solving does not necessarily mean going to the word problems in your textbook, said Latrenda Knighten, a mathematics instructional coach in Baton Rouge, La. For little kids, it can be as simple as showing a group of geometric shapes and asking what they have in common. Students may go off track a bit by talking about things like color, she said, but teachers can steer them towards thinking about things like how a rectangle differs from a triangle.

4. Let your students push themselves

Tackling these richer, real-world problems can be tougher than solving equations on a worksheet. And that is a good thing, said Jo Boaler, a professor at Stanford University and an expert on math education. “It’s really good for your brain to struggle,” she said. “We don’t want kids getting right answers all the time because that’s not giving their brains a really good workout.” These types of problems require collaboration, a skill that many don’t associate with math, but that is key to how math reasoning works beyond the classroom. The complexity and difficulty of the tasks means that students “have to talk to each other and really figure out what to do, what’s a good method?”

5. Celebrate ‘favorite mistakes’ to encourage intellectual risk taking

Wrong answers should be viewed as learning opportunities, Berry said. When one of her students makes an error, she asks if she can share it with the class as a “favorite mistake.” Most of the time, students are comfortable with that, and the class will work together to figure how the misstep happened.

6. Remember there’s no such thing as a being born with a ‘math brain’

Some teachers believe that certain students are just naturally good at math, and others are not, Boaler said. But that’s not true. “Brains are constantly shaping, changing, developing, connecting, and there is no fixed anything,” said Boaler, who often works alongside neuroscientists. What’s more, many elementary school teachers lack confidence in their own math abilities, she said. “They think they can’t do [math],” Boaler said. “And they often pass those ideas on” to their students.

Sign Up for EdWeek Update

Edweek top school jobs.

Photo collage of math equations and clock.

Sign Up & Sign In

module image 9

Home

Reading & Math for K-5

  • Kindergarten
  • Learning numbers
  • Comparing numbers
  • Place Value
  • Roman numerals
  • Subtraction
  • Multiplication
  • Order of operations
  • Drills & practice
  • Measurement
  • Factoring & prime factors
  • Proportions
  • Shape & geometry
  • Data & graphing
  • Word problems
  • Children's stories
  • Leveled Stories
  • Sentences & passages
  • Context clues
  • Cause & effect
  • Compare & contrast
  • Fact vs. fiction
  • Fact vs. opinion
  • Main idea & details
  • Story elements
  • Conclusions & inferences
  • Sounds & phonics
  • Words & vocabulary
  • Reading comprehension
  • Early writing
  • Numbers & counting
  • Simple math
  • Social skills
  • Other activities
  • Dolch sight words
  • Fry sight words
  • Multiple meaning words
  • Prefixes & suffixes
  • Vocabulary cards
  • Other parts of speech
  • Punctuation
  • Capitalization
  • Narrative writing
  • Opinion writing
  • Informative writing
  • Cursive alphabet
  • Cursive letters
  • Cursive letter joins
  • Cursive words
  • Cursive sentences
  • Cursive passages
  • Grammar & Writing

Breadcrumbs

Math Workbooks

Download & Print From only $2.20

Free Math Worksheets

Printable math worksheets from k5 learning.

Our  free math worksheets  cover the full range of elementary school math skills from numbers and counting through fractions, decimals, word problems and more. All worksheets are printable files with answers on the 2nd page.

Math worksheets by grade:

 
 
 
 

Math worksheets by topic:

 
   
 

math problem solving for elementary

Sample Math Worksheet

What is K5?

K5 Learning offers free worksheets , flashcards  and inexpensive  workbooks  for kids in kindergarten to grade 5. Become a member  to access additional content and skip ads.

math problem solving for elementary

Our members helped us give away millions of worksheets last year.

We provide free educational materials to parents and teachers in over 100 countries. If you can, please consider purchasing a membership ($24/year) to support our efforts.

Members skip ads and access exclusive features.

Learn about member benefits

This content is available to members only.

Join K5 to save time, skip ads and access more content. Learn More

3.1 Use a Problem-Solving Strategy

Learning objectives.

By the end of this section, you will be able to:

  • Approach word problems with a positive attitude
  • Use a problem-solving strategy for word problems
  • Solve number problems

Be Prepared 3.1

Before you get started, take this readiness quiz.

Translate “6 less than twice x ” into an algebraic expression. If you missed this problem, review Example 1.26 .

Be Prepared 3.2

Solve: 2 3 x = 24 . 2 3 x = 24 . If you missed this problem, review Example 2.16 .

Solve: 3 x + 8 = 14 . 3 x + 8 = 14 . If you missed this problem, review Example 2.27 .

Approach Word Problems with a Positive Attitude

“If you think you can… or think you can’t… you’re right.”—Henry Ford

The world is full of word problems! Will my income qualify me to rent that apartment? How much punch do I need to make for the party? What size diamond can I afford to buy my girlfriend? Should I fly or drive to my family reunion?

How much money do I need to fill the car with gas? How much tip should I leave at a restaurant? How many socks should I pack for vacation? What size turkey do I need to buy for Thanksgiving dinner, and then what time do I need to put it in the oven? If my sister and I buy our mother a present, how much does each of us pay?

Now that we can solve equations, we are ready to apply our new skills to word problems. Do you know anyone who has had negative experiences in the past with word problems? Have you ever had thoughts like the student below?

When we feel we have no control, and continue repeating negative thoughts, we set up barriers to success. We need to calm our fears and change our negative feelings.

Start with a fresh slate and begin to think positive thoughts. If we take control and believe we can be successful, we will be able to master word problems! Read the positive thoughts in Figure 3.3 and say them out loud.

Think of something, outside of school, that you can do now but couldn’t do 3 years ago. Is it driving a car? Snowboarding? Cooking a gourmet meal? Speaking a new language? Your past experiences with word problems happened when you were younger—now you’re older and ready to succeed!

Use a Problem-Solving Strategy for Word Problems

We have reviewed translating English phrases into algebraic expressions, using some basic mathematical vocabulary and symbols. We have also translated English sentences into algebraic equations and solved some word problems. The word problems applied math to everyday situations. We restated the situation in one sentence, assigned a variable, and then wrote an equation to solve the problem. This method works as long as the situation is familiar and the math is not too complicated.

Now, we’ll expand our strategy so we can use it to successfully solve any word problem. We’ll list the strategy here, and then we’ll use it to solve some problems. We summarize below an effective strategy for problem solving.

Use a Problem-Solving Strategy to Solve Word Problems.

  • Step 1. Read the problem. Make sure all the words and ideas are understood.
  • Step 2. Identify what we are looking for.
  • Step 3. Name what we are looking for. Choose a variable to represent that quantity.
  • Step 4. Translate into an equation. It may be helpful to restate the problem in one sentence with all the important information. Then, translate the English sentence into an algebraic equation.
  • Step 5. Solve the equation using good algebra techniques.
  • Step 6. Check the answer in the problem and make sure it makes sense.
  • Step 7. Answer the question with a complete sentence.

Example 3.1

Pilar bought a purse on sale for $18, which is one-half of the original price. What was the original price of the purse?

Step 1. Read the problem. Read the problem two or more times if necessary. Look up any unfamiliar words in a dictionary or on the internet.

  • In this problem, is it clear what is being discussed? Is every word familiar?

Step 2. Identify what you are looking for. Did you ever go into your bedroom to get something and then forget what you were looking for? It’s hard to find something if you are not sure what it is! Read the problem again and look for words that tell you what you are looking for!

  • In this problem, the words “what was the original price of the purse” tell us what we need to find.

Step 3. Name what we are looking for. Choose a variable to represent that quantity. We can use any letter for the variable, but choose one that makes it easy to remember what it represents.

  • Let p = p = the original price of the purse.

Step 4. Translate into an equation. It may be helpful to restate the problem in one sentence with all the important information. Translate the English sentence into an algebraic equation.

Reread the problem carefully to see how the given information is related. Often, there is one sentence that gives this information, or it may help to write one sentence with all the important information. Look for clue words to help translate the sentence into algebra. Translate the sentence into an equation.

Restate the problem in one sentence with all the important information.
Translate into an equation.

Step 5. Solve the equation using good algebraic techniques. Even if you know the solution right away, using good algebraic techniques here will better prepare you to solve problems that do not have obvious answers.

Solve the equation.
Multiply both sides by 2.
Simplify.

Step 6. Check the answer in the problem to make sure it makes sense. We solved the equation and found that p = 36 , p = 36 , which means “the original price” was $36.

  • Does $36 make sense in the problem? Yes, because 18 is one-half of 36, and the purse was on sale at half the original price.

Step 7. Answer the question with a complete sentence. The problem asked “What was the original price of the purse?”

  • The answer to the question is: “The original price of the purse was $36.”

If this were a homework exercise, our work might look like this:

Pilar bought a purse on sale for $18, which is one-half the original price. What was the original price of the purse?

Let the original price.
18 is one-half the original price.
Multiply both sides by 2.
Simplify.
Check. Is $36 a reasonable price for a purse?
Yes.
Is 18 one half of 36?
The original price of the purse was $36.

Joaquin bought a bookcase on sale for $120, which was two-thirds of the original price. What was the original price of the bookcase?

Two-fifths of the songs in Mariel’s playlist are country. If there are 16 country songs, what is the total number of songs in the playlist?

Let’s try this approach with another example.

Example 3.2

Ginny and her classmates formed a study group. The number of girls in the study group was three more than twice the number of boys. There were 11 girls in the study group. How many boys were in the study group?

the problem.
what we are looking for. How many boys were in the study group?
Choose a variable to represent the number of boys. Let the number of boys.
Restate the problem in one sentence with all the important information.
Translate into an equation.
the equation.
Subtract 3 from each side.
Simplify.
Divide each side by 2.
Simplify.
First, is our answer reasonable? Yes, having 4 boys in a study group seems OK. The problem says the number of girls was 3 more than twice the number of boys. If there are four boys, does that make eleven girls? Twice 4 boys is 8. Three more than 8 is 11.
the question. There were 4 boys in the study group.

Guillermo bought textbooks and notebooks at the bookstore. The number of textbooks was 3 more than twice the number of notebooks. He bought 7 textbooks. How many notebooks did he buy?

Gerry worked Sudoku puzzles and crossword puzzles this week. The number of Sudoku puzzles he completed is eight more than twice the number of crossword puzzles. He completed 22 Sudoku puzzles. How many crossword puzzles did he do?

Solve Number Problems

Now that we have a problem solving strategy, we will use it on several different types of word problems. The first type we will work on is “number problems.” Number problems give some clues about one or more numbers. We use these clues to write an equation. Number problems don’t usually arise on an everyday basis, but they provide a good introduction to practicing the problem solving strategy outlined above.

Example 3.3

The difference of a number and six is 13. Find the number.

the problem. Are all the words familiar?
what we are looking for. the number
Choose a variable to represent the number. Let the number.
Remember to look for clue words like "difference... of... and..."
Restate the problem as one sentence.
Translate into an equation.
the equation.
Simplify.
The difference of 19 and 6 is 13. It checks!
the question. The number is 19.

The difference of a number and eight is 17. Find the number.

The difference of a number and eleven is −7 . −7 . Find the number.

Example 3.4

The sum of twice a number and seven is 15. Find the number.

the problem.
what we are looking for. the number
Choose a variable to represent the number. Let the number.
Restate the problem as one sentence.
Translate into an equation.
the equation.
Subtract 7 from each side and simplify.
Divide each side by 2 and simplify.
Is the sum of twice 4 and 7 equal to 15?
the question. The number is 4.

Did you notice that we left out some of the steps as we solved this equation? If you’re not yet ready to leave out these steps, write down as many as you need.

The sum of four times a number and two is 14. Find the number.

The sum of three times a number and seven is 25. Find the number.

Some number word problems ask us to find two or more numbers. It may be tempting to name them all with different variables, but so far we have only solved equations with one variable. In order to avoid using more than one variable, we will define the numbers in terms of the same variable. Be sure to read the problem carefully to discover how all the numbers relate to each other.

Example 3.5

One number is five more than another. The sum of the numbers is 21. Find the numbers.

the problem.
what we are looking for. We are looking for two numbers.
We have two numbers to name and need a name for each.
Choose a variable to represent the first number. Let number.
What do we know about the second number? One number is five more than another.
number
Restate the problem as one sentence with all the important information. The sum of the 1 number and the 2 number is 21.
Translate into an equation.
Substitute the variable expressions.
the equation.
Combine like terms.
Subtract 5 from both sides and simplify.
Divide by 2 and simplify.
Find the second number, too.
Do these numbers check in the problem?
Is one number 5 more than the other?
Is thirteen 5 more than 8? Yes.
Is the sum of the two numbers 21?
the question. The numbers are 8 and 13.

One number is six more than another. The sum of the numbers is twenty-four. Find the numbers.

Try It 3.10

The sum of two numbers is fifty-eight. One number is four more than the other. Find the numbers.

Example 3.6

The sum of two numbers is negative fourteen. One number is four less than the other. Find the numbers.

the problem.
what we are looking for. We are looking for two numbers.
Choose a variable. Let number.
One number is 4 less than the other. number
Write as one sentence. The sum of the 2 numbers is negative 14.
Translate into an equation.
the equation.
Combine like terms.
Add 4 to each side and simplify.
Simplify.
Is −9 four less than −5?
Is their sum −14?
the question. The numbers are −5 and −9.

Try It 3.11

The sum of two numbers is negative twenty-three. One number is seven less than the other. Find the numbers.

Try It 3.12

The sum of two numbers is −18 . −18 . One number is 40 more than the other. Find the numbers.

Example 3.7

One number is ten more than twice another. Their sum is one. Find the numbers.

the problem.
what you are looking for. We are looking for two numbers.
Choose a variable. Let number.
One number is 10 more than twice another. number
Restate as one sentence. Their sum is one.
The sum of the two numbers is 1.
Translate into an equation.
the equation.
Combine like terms.
Subtract 10 from each side.
Divide each side by 3.
Is ten more than twice −3 equal to 4?
Is their sum 1?
the question. The numbers are −3 and 4.

Try It 3.13

One number is eight more than twice another. Their sum is negative four. Find the numbers.

Try It 3.14

One number is three more than three times another. Their sum is −5 . −5 . Find the numbers.

Some number problems involve consecutive integers. Consecutive integers are integers that immediately follow each other. Examples of consecutive integers are:

Notice that each number is one more than the number preceding it. So if we define the first integer as n , the next consecutive integer is n + 1 . n + 1 . The one after that is one more than n + 1 , n + 1 , so it is n + 1 + 1 , n + 1 + 1 , which is n + 2 . n + 2 .

Example 3.8

The sum of two consecutive integers is 47. Find the numbers.

the problem.
what you are looking for. two consecutive integers
each number. Let integer.
next consecutive integer
Restate as one sentence. The sum of the integers is 47.
Translate into an equation.
the equation.
Combine like terms.
Subtract 1 from each side.
Divide each side by 2.
the question. The two consecutive integers are 23 and 24.

Try It 3.15

The sum of two consecutive integers is 95 . 95 . Find the numbers.

Try It 3.16

The sum of two consecutive integers is −31 . −31 . Find the numbers.

Example 3.9

Find three consecutive integers whose sum is −42 . −42 .

the problem.
what we are looking for. three consecutive integers
each of the three numbers. Let integer.
2 consecutive integer
3 consecutive integer
Restate as one sentence. The sum of the three integers is −42.
Translate into an equation.
the equation.
Combine like terms.
Subtract 3 from each side.
Divide each side by 3.


the question. The three consecutive integers are −13, −14, and −15.

Try It 3.17

Find three consecutive integers whose sum is −96 . −96 .

Try It 3.18

Find three consecutive integers whose sum is −36 . −36 .

Now that we have worked with consecutive integers, we will expand our work to include consecutive even integers and consecutive odd integers. Consecutive even integers are even integers that immediately follow one another. Examples of consecutive even integers are:

Notice each integer is 2 more than the number preceding it. If we call the first one n , then the next one is n + 2 . n + 2 . The next one would be n + 2 + 2 n + 2 + 2 or n + 4 . n + 4 .

Consecutive odd integers are odd integers that immediately follow one another. Consider the consecutive odd integers 77, 79, and 81.

Does it seem strange to add 2 (an even number) to get from one odd integer to the next? Do you get an odd number or an even number when we add 2 to 3? to 11? to 47?

Whether the problem asks for consecutive even numbers or odd numbers, you don’t have to do anything different. The pattern is still the same—to get from one odd or one even integer to the next, add 2.

Example 3.10

Find three consecutive even integers whose sum is 84.

the problem.
what we are looking for. three consecutive even integers
the integers. Let even integer.
consecutive even integer
consecutive even integer
Restate as one sentence. The sume of the three even integers is 84.
Translate into an equation.
the equation.
Combine like terms.
Subtract 6 from each side.
Divide each side by 3.
the question. The three consecutive integers are 26, 28, and 30.

Try It 3.19

Find three consecutive even integers whose sum is 102.

Try It 3.20

Find three consecutive even integers whose sum is −24 . −24 .

Example 3.11

A married couple together earns $110,000 a year. The wife earns $16,000 less than twice what her husband earns. What does the husband earn?

the problem.
what we are looking for. How much does the husband earn?
.
Choose a variable to represent the amount
the husband earns.
Let the amount the husband earns.
The wife earns $16,000 less than twice that. the amount the wife earns.
Together the husband and wife earn $110,000.
Restate the problem in one sentence with
all the important information.
Translate into an equation.
the equation. h + 2h − 16,000 = 110,000
Combine like terms. 3h − 16,000 = 110,000
Add 16,000 to both sides and simplify. 3h = 126,000
Divide each side by 3. h = 42,000
$42,000 amount husband earns
2h − 16,000 amount wife earns
2(42,000) − 16,000
84,000 − 16,000
68,000
If the wife earns $68,000 and the husband earns $42,000 is the total $110,000? Yes!
the question. The husband earns $42,000 a year.

Try It 3.21

According to the National Automobile Dealers Association, the average cost of a car in 2014 was $28,500. This was $1,500 less than 6 times the cost in 1975. What was the average cost of a car in 1975?

Try It 3.22

U.S. Census data shows that the median price of new home in the United States in November 2014 was $280,900. This was $10,700 more than 14 times the price in November 1964. What was the median price of a new home in November 1964?

Section 3.1 Exercises

Practice makes perfect.

Use the Approach Word Problems with a Positive Attitude

In the following exercises, prepare the lists described.

List five positive thoughts you can say to yourself that will help you approach word problems with a positive attitude. You may want to copy them on a sheet of paper and put it in the front of your notebook, where you can read them often.

List five negative thoughts that you have said to yourself in the past that will hinder your progress on word problems. You may want to write each one on a small piece of paper and rip it up to symbolically destroy the negative thoughts.

In the following exercises, solve using the problem solving strategy for word problems. Remember to write a complete sentence to answer each question.

Two-thirds of the children in the fourth-grade class are girls. If there are 20 girls, what is the total number of children in the class?

Three-fifths of the members of the school choir are women. If there are 24 women, what is the total number of choir members?

Zachary has 25 country music CDs, which is one-fifth of his CD collection. How many CDs does Zachary have?

One-fourth of the candies in a bag of M&M’s are red. If there are 23 red candies, how many candies are in the bag?

There are 16 girls in a school club. The number of girls is four more than twice the number of boys. Find the number of boys.

There are 18 Cub Scouts in Pack 645. The number of scouts is three more than five times the number of adult leaders. Find the number of adult leaders.

Huong is organizing paperback and hardback books for her club’s used book sale. The number of paperbacks is 12 less than three times the number of hardbacks. Huong had 162 paperbacks. How many hardback books were there?

Jeff is lining up children’s and adult bicycles at the bike shop where he works. The number of children’s bicycles is nine less than three times the number of adult bicycles. There are 42 adult bicycles. How many children’s bicycles are there?

Philip pays $1,620 in rent every month. This amount is $120 more than twice what his brother Paul pays for rent. How much does Paul pay for rent?

Marc just bought an SUV for $54,000. This is $7,400 less than twice what his wife paid for her car last year. How much did his wife pay for her car?

Laurie has $46,000 invested in stocks and bonds. The amount invested in stocks is $8,000 less than three times the amount invested in bonds. How much does Laurie have invested in bonds?

Erica earned a total of $50,450 last year from her two jobs. The amount she earned from her job at the store was $1,250 more than three times the amount she earned from her job at the college. How much did she earn from her job at the college?

In the following exercises, solve each number word problem.

The sum of a number and eight is 12. Find the number.

The sum of a number and nine is 17. Find the number.

The difference of a number and 12 is three. Find the number.

The difference of a number and eight is four. Find the number.

The sum of three times a number and eight is 23. Find the number.

The sum of twice a number and six is 14. Find the number.

The difference of twice a number and seven is 17. Find the number.

The difference of four times a number and seven is 21. Find the number.

Three times the sum of a number and nine is 12. Find the number.

Six times the sum of a number and eight is 30. Find the number.

One number is six more than the other. Their sum is 42. Find the numbers.

One number is five more than the other. Their sum is 33. Find the numbers.

The sum of two numbers is 20. One number is four less than the other. Find the numbers.

The sum of two numbers is 27. One number is seven less than the other. Find the numbers.

The sum of two numbers is −45 . −45 . One number is nine more than the other. Find the numbers.

The sum of two numbers is −61 . −61 . One number is 35 more than the other. Find the numbers.

The sum of two numbers is −316 . −316 . One number is 94 less than the other. Find the numbers.

The sum of two numbers is −284 . −284 . One number is 62 less than the other. Find the numbers.

One number is 14 less than another. If their sum is increased by seven, the result is 85. Find the numbers.

One number is 11 less than another. If their sum is increased by eight, the result is 71. Find the numbers.

One number is five more than another. If their sum is increased by nine, the result is 60. Find the numbers.

One number is eight more than another. If their sum is increased by 17, the result is 95. Find the numbers.

One number is one more than twice another. Their sum is −5 . −5 . Find the numbers.

One number is six more than five times another. Their sum is six. Find the numbers.

The sum of two numbers is 14. One number is two less than three times the other. Find the numbers.

The sum of two numbers is zero. One number is nine less than twice the other. Find the numbers.

The sum of two consecutive integers is 77. Find the integers.

The sum of two consecutive integers is 89. Find the integers.

The sum of two consecutive integers is −23 . −23 . Find the integers.

The sum of two consecutive integers is −37 . −37 . Find the integers.

The sum of three consecutive integers is 78. Find the integers.

The sum of three consecutive integers is 60. Find the integers.

Find three consecutive integers whose sum is −3 . −3 .

Find three consecutive even integers whose sum is 258.

Find three consecutive even integers whose sum is 222.

Find three consecutive odd integers whose sum is 171.

Find three consecutive odd integers whose sum is 291.

Find three consecutive even integers whose sum is −36 . −36 .

Find three consecutive even integers whose sum is −84 . −84 .

Find three consecutive odd integers whose sum is −213 . −213 .

Find three consecutive odd integers whose sum is −267 . −267 .

Everyday Math

Sale Price Patty paid $35 for a purse on sale for $10 off the original price. What was the original price of the purse?

Sale Price Travis bought a pair of boots on sale for $25 off the original price. He paid $60 for the boots. What was the original price of the boots?

Buying in Bulk Minh spent $6.25 on five sticker books to give his nephews. Find the cost of each sticker book.

Buying in Bulk Alicia bought a package of eight peaches for $3.20. Find the cost of each peach.

Price before Sales Tax Tom paid $1,166.40 for a new refrigerator, including $86.40 tax. What was the price of the refrigerator?

Price before Sales Tax Kenji paid $2,279 for a new living room set, including $129 tax. What was the price of the living room set?

Writing Exercises

What has been your past experience solving word problems?

When you start to solve a word problem, how do you decide what to let the variable represent?

What are consecutive odd integers? Name three consecutive odd integers between 50 and 60.

What are consecutive even integers? Name three consecutive even integers between −50 −50 and −40 . −40 .

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ If most of your checks were:

…confidently. Congratulations! You have achieved your goals in this section! Reflect on the study skills you used so that you can continue to use them. What did you do to become confident of your ability to do these things? Be specific!

…with some help. This must be addressed quickly as topics you do not master become potholes in your road to success. Math is sequential—every topic builds upon previous work. It is important to make sure you have a strong foundation before you move on. Whom can you ask for help? Your fellow classmates and instructor are good resources. Is there a place on campus where math tutors are available? Can your study skills be improved?

…no—I don’t get it! This is critical and you must not ignore it. You need to get help immediately or you will quickly be overwhelmed. See your instructor as soon as possible to discuss your situation. Together you can come up with a plan to get you the help you need.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/elementary-algebra-2e/pages/1-introduction
  • Authors: Lynn Marecek, MaryAnne Anthony-Smith, Andrea Honeycutt Mathis
  • Publisher/website: OpenStax
  • Book title: Elementary Algebra 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/elementary-algebra-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/elementary-algebra-2e/pages/3-1-use-a-problem-solving-strategy

© Jul 24, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

math problem solving for elementary

K-5 Math Centers

K-5 math ideas, 3rd grade math, need help organizing your k-5 math block, 5 ways to include math problem solving activities in your classroom.

math problem solving for elementary

Are you looking for math problem solving activities that are not too easy and not too hard, but juuust right? I’ve got something just for you and your students.

math problem solving for elementary

Solve and Explain Problem Solving Tasks are open-ended math tasks that provide just the right amount of challenge for your kids. Here’s a little more about them.

Open-ended math problem solving tasks:

  • promote multiple solution paths and/or multiple solutions
  • boost critical thinking and math reasoning skills
  • increase opportunities for developing perseverance
  • provide opportunities to justify answer choices
  • strengthen kids written and oral communication skills

math problem solving activities organization

What Makes These So Great?

  • All Common Core Standards are covered for your grade level
  • 180+ Quality questions that are rigorous yet engaging
  • They are SUPER easy to assemble
  • Provide opportunities for meaningful math discussions
  • Perfect for developing a growth mindset
  • Easily identify student misconceptions so you can provide assistance
  • Very versatile (check out the different ways to use them below)

You can find out more details for your grade level by clicking on the buttons below.

I’m sure you really want to know how can you use these with your kids. Check out the top 5 ideas on how to use Solve and Explain Problem Solving Tasks in your classroom.

How and When Can I Use Them?

Solve and Explain Tasks Cards are very versatile. You can use them for:

  • Math Centers  – This is my favorite way to use these! Depending on your grade level, there are at least two (Kinder – 2nd) or three (3rd-5th) tasks types per Common Core standard. And each task type has 6 different questions. Print out each of the different tasks types on different color paper. Then, let students choose which one question from each task type they want to solve.

math problem solving activities task cards and recording sheets

  • Problem of the Day  – Use them as a daily math journal prompt. Print out the recording sheet and project one of the problems on your white board or wall.  Students solve the problem and then glue it in their spiral or composition notebooks.

math problem solving activities notebook

  • Early Finisher Activities  -No more wondering what to do next!Create an early finishers notebook where students can grab a task and a recording sheet. Place the cards in sheet protectors and make copies of the Early Finisher Activity Check-Off card for your kids to fill out BEFORE they pull a card out to work on. We want to make sure kids are not rushing through there first assignment before moving on to an early finisher activity.

math problem solving activities early finisher notebook

  • Weekly Math Challenges  – Kids LOVE challenges! Give students copies of one of the problems for homework. Then give them a week to complete it. Since many of the questions have multiple solutions and students have to explain how they got their answers, you can have a rich whole group discussion at the end of the week (even with your kindergarten and 1st grade students).

Shop Recommended Resources

Kindergarten Problem Solving

  • Formative Assessments  – Give your students a problem to solve. Then use the Teacher Scoring Rubric to see how your kids are doing with each standard. Since they have to explain their thinking, this is a great way to catch any misconceptions and give feedback to individual students.

math problem solving activities rubric and task card

So this wraps up the top 5 ways that you can use problem solving tasks in your classroom.  Click your grade level below to get Solve and Explain problem solving tasks for your classroom.

  • Read more about: K-5 Math Ideas

You might also like...

math problem solving for elementary

Reflect and Reset: Tips for Becoming a Better Math Teacher

student-math-reflection

Student Math Reflection Activities That Deepen Understanding

math problem solving for elementary

5 Math Mini-Lesson Ideas that Keep Students Engaged

math problem solving for elementary

A Rigorous Elementary Math Curriculum for Busy Teachers

math problem solving for elementary

What We Offer:

Follow us here:.

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions

International Journal of Learning, Teaching and Educational Research

  • Announcements
  • Editorial Board
  • Submit a Paper
  • Publication Ethics
  • ##PAPER TEMPLATE##
  • ##Retraction Policy##

Project-Based Learning in Fostering Creative Thinking and Mathematical Problem-Solving Skills: Evidence from Primary Education in Indonesia

The interdependence between the Project-Based Learning (PjBL) Model and the growth and enhancement of Creative Thinking and Mathematical Problem Solving Skills in Elementary Schools is unquestionable nowadays. Prior studies have yet to discover concrete evidence regarding the interdependence being discussed. This study highlighted cognitive abilities related to creative thinking and mathematics problem-solving by implementing the Project-Based Learning Model. This research was a quasi-experiment with a pretest-posttest control group design involving 43 students in the sixth grade of two elementary schools; data was collected through test and classroom observation, and then the data was analyzed using Multivariate Analysis of Variance (MANOVA). Conversely, students exposed to project-based learning models exhibit higher skill levels in creative thinking and problem-solving than those instructed using conventional learning models. The project-based learning model significantly impacted elementary school children’s creative thinking and mathematics problem-solving skills. These findings suggest that the Project-Based Learning Model is acceptable for instructors seeking to foster creativity in teaching mathematics at the primary school level in Indonesia or other countries with comparable settings.

https://doi.org/10.26803/ijlter.23.8.15

Adijaya, M. A., Widiana, I. W., Parwata, I. G. L. A., & Antara, I. G. W. S. (2023). Bloom’s taxonomy revision-oriented learning activities to improve procedural capabilities and learning outcomes. International Journal of Educational Methodology, 9(1), 261–270. https://doi.org/10.12973/ijem.9.1.261

Albab, U., Budiyono, & Indriati, D. (2020). Metacognition skills and higher order thinking skills (HOTS) in mathematics. Journal of Physics: Conference Series, 1613(1), Article 012017. https://doi.org/10.1088/1742-6596/1613/1/012017

Almulla, M. A. (2020). The effectiveness of the project-based learning (PBL) approach as a way to engage students in learning. SAGE Open, 10(3), 1–15. https://doi.org/10.1177/2158244020938702

Amerstorfer, C. M., & Münster-Kistner, C. F. V. (2021). Student perceptions of academic engagement and student-teacher relationships in problem-based learning. Frontiers in Psychology, 12, 1–18. https://doi.org/10.3389/fpsyg.2021.713057

Arends, R. I. (2013). Learning to teach (9th ed.). McGraw-Hill.

Arici, F. (2023). An examination of the effectiveness of problem-based learning method supported by augmented reality in science education. Journal of Computer Assisted Learning, 39(2), 446–476. https://doi.org/10.1111/jcal.12752

Astuti, P., Qohar, A., & Hidayanto, E. (2019). Proses berpikir siswa dalam menyelesaikan soal higher order thinking skills berdasarkan pemahaman konseptual dan prosedural [Students’ thinking process in solving higher order thinking skills questions based on conceptual and procedural understanding]. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 4(1), 117. https://doi.org/10.17977/jptpp.v4i1.11910

Astutik, S., Mahardika, I. K., Indrawati, Sudarti, & Supeno. (2020). HOTS student worksheet to identification of scientific creativity skill, critical thinking skill and creative thinking skill in physics learning. Journal of Physics: Conference Series, 1465(1), Article 012075. https://doi.org/10.1088/1742-6596/1465/1/012075

Aziz, A. A. M. A. (2021). The development of the HOTS mathematical problem-solving framework using the Bar model strategy: A need analysis. Review of International Geographical Education Online, 11(4), 972–981. https://doi.org/10.33403/rigeo.8006811

Babakr, Z. H., Mohamedamin, P., & Kakamad, K. (2019). Piaget’s cognitive developmental theory: Critical review. Education Quarterly Reviews, 2(3), 517–524. https://doi.org/10.31014/aior.1993.02.03.84

Benraghda, A. (2022). Self-assessment as a self-regulated learning approach in English oral presentations: College students’ choices and perceptions. Cogent Education, 9(1), Article 2123472. https://doi.org/10.1080/2331186X.2022.2123472

Cammies, C., Cunningham, J. A., & Pike, R. K. (2022). Not all Bloom and gloom: Assessing constructive alignment, higher order cognitive skills, and their influence on students’ perceived learning within the practical components of an undergraduate biology course. Journal of Biological Education, 58(3), 588–608. https://doi.org/10.1080/00219266.2022.2092191

Chen, J., Kolmos, A., & Du, X. (2021). Forms of implementation and challenges of PBL in engineering education: A review of literature. European Journal of Engineering Education, 46(1), 90–115. https://doi.org/10.1080/03043797.2020.1718615

Cheng, L., Wang, M., Chen, Y., Niu, W., Hong, M., & Zhu, Y. (2022). Design my music instrument: A project-based science, technology, engineering, arts, and mathematics program on the development of creativity. Frontiers in Psychology, 12, 1–8. https://doi.org/10.3389/fpsyg.2021.763948

C?r?t, D. K., & Aydemir, S. (2023). Online scratch activities during the COVID-19 pandemic: Computational and creative thinking. International Journal of Evaluation and Research in Education, 12(4), 2111–2120. https://doi.org/10.11591/ijere.v12i4.24938

Cook, S. C. (2020). Schema-based instruction for mathematical word problem solving: An evidence-based review for students with learning disabilities. Learning Disability Quarterly, 43(2), 75–87. https://doi.org/10.1177/0731948718823080

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publication.

Cruz, S., Lencastre, J. A., & Viseu, F. (2023). Heuristics and usability testing of a project-based learning online course: A case study with structural mathematical concepts. International Journal of Instruction, 16(3), 465–488. https://doi.org/10.29333/iji.2023.16325a

Diego-Mantecon, J. M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. ZDM – Mathematics Education, 53(5), 1137–1148. https://doi.org/10.1007/s11858-021-01303-9

Edwar, E., Putri, R. I. I., Zulkardi, Z., & Darmawijoyo, D. (2023). Developing a workshop model for high school mathematics teachers constructing HOTS questions through the Pendidikan Matematika Realistik Indonesia approach. Journal on Mathematics Education, 14(4), 603–626. https://doi.org/10.22342/jme.v14i4.pp603-626

Gunawardena, M. (2021). Scaffolding students’ critical thinking: A process not an end game. Thinking Skills and Creativity, 41, Article 100848. https://doi.org/10.1016/j.tsc.2021.100848

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, Article 101586. https://doi.org/10.1016/j.ijer.2020.101586

Handayani, A. D., & Iswantiningtyas, V. (2020). Javanese traditional games as a teaching and learning media to socialize and introduce mathematics since early age. Journal of Physics: Conference Series, 1521(3), 1–7. https://doi.org/10.1088/1742-6596/1521/3/032008

Hawari, A. D. M., & Noor, A. I. M. (2020). Project based learning pedagogical design in STEAM art education. Asian Journal of University Education, 16(3), 102–111. https://doi.org/10.24191/ajue.v16i3.11072

Hidayati, Y. M., Ngalim, A., Sutama, Arifin, Z., Abidin, Z., & Rahmawati, E. (2020). Level of combinatorial thinking in solving mathematical problems. Journal for the Education of Gifted Young Scientists, 8(3), 1231–1243. https://doi.org/10.17478/JEGYS.751038

Hujjatusnaini, N. (2020). The effect of blended project-based learning integrated with 21st-century skills on pre-service biology teachers’ higher-order thinking skills. Jurnal Pendidikan IPA Indonesia, 11(1), 104–118. https://doi.org/10.15294/jpii.v11i1.27148

Irdalisa, I., Zulherman, Z., Elvianasti, M., Widodo, W. S., & Hanum, E. (2024). Effectiveness of project-based learning on STEAM-based student’s worksheet analysis with ecoprint technique. International Journal of Educational Methodology, 10(1), 123–135. https://doi.org/10.12973/ijem.10.1.923

Jiang, B., & Li, Z. (2021). Effect of Scratch on computational thinking skills of Chinese primary school students. Journal of Computers in Education, 8(4), 505–525. https://doi.org/10.1007/s40692-021-00190-z

Jiang, Y., Xu, N., Xu, S., & Wang, S. (2022). The enlightenment of Piaget’s theory to Chinese primary school education. Advances in Social Science, Education and Humanities Research, 670, 878–882. https://doi.org/10.2991/assehr.k.220704.158

Junianto, J., & Wijaya, A. (2019). Developing students’ mathematical literacy through problem based learning. Journal of Physics: Conference Series, 1320(1), Article 012035. IOP Publishing. https://doi.org/10.1088/1742-6596/1320/1/012035

Karan, E. (2022). Enhancing students’ problem-solving skills through project-based learning. Journal of Problem Based Learning in Higher Education, 10(1), 74–87. https://doi.org/10.54337/ojs.jpblhe.v10i1.6887

Kemendikbudristek. (2023). Laporan PISA Kemendikbudristek [PISA report of the Ministry of Education and Culture]. PISA 2022 Dan Pemulihan Pembelajaran Indonesia (pp. 1–25). https://balaibahasariau.kemdikbud.go.id/wpcontent/uploads/2023/12/LAPORAN-PISA-KEMENDIKBUDRISTEK.pdf

Khalid, M., Saad, S., Hamid, S. R. A., Abdullah, M. R., Ibrahim, H., & Shahrill, M. (2020). Enhancing creativity and problem solving skills through creative problem solving in teaching mathematics. Creativity Studies, 13(2), 270–291. https://doi.org/10.3846/cs.2020.11027

Kharisma, F. N., Susilowati, S. M. E., & Ridlo, S. (2019). The effective learning models in developing problem-solving skills. KnE Social Sciences, 3(18), 595–604 https://doi.org/10.18502/kss.v3i18.4750

Kim, H. W., & Kim, M. K. (2021). A case study of children’s interaction types and learning motivation in small group project-based learning activities in a mathematics classroom. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), em2051. https://doi.org/10.29333/ejmste/11415

Kurniawan, E. S., Mundilarto, M., & Istiyono, E. (2024). Improving student higher order thinking skills using Synectic-HOTS-oriented learning model. International Journal of Evaluation and Research in Education, 13(2), 1132–1140. https://doi.org/10.11591/ijere.v13i2.25002

Lafmejani, A. Q. (2022). Cognitive evolution of the “Human” concept and its adaptation to Piaget’s theory. Caspian Journal of Neurological Sciences, 8(4), 222–233. https://doi.org/10.32598/CJNS.4.31.355.1

Lazi?, B. D., Kneževi?, J. B., & Mari?i?, S. M. (2021). The influence of project-based learning on student achievement in elementary mathematics education. South African Journal of Education, 41(3), Article 1909. https://doi.org/10.15700/saje.v41n3a1909

Leasa, M. (2020). The effect of learning styles on the critical thinking skills in natural science learning of elementary school students. Elementary Education Online, 19(4), 2086–2097. https://doi.org/10.17051/ilkonline.2020.763449

Lee, J. S., & Galindo, E. (2021). Examining project-based learning successes and challenges of mathematics preservice teachers in a teacher residency program: Learning by doing. Interdisciplinary Journal of Problem-Based Learning, 15(1), 1–20. https://doi.org/10.14434/ijpbl.v15i1.28786

Li, Z. (2022). Assessment of scientific thinking and creativity in an electronic educational environment. International Journal of Science Education, 44(3), 463–486. https://doi.org/10.1080/09500693.2022.2032863

Lin, X. (2021). Investigating the unique predictors of word-problem solving using meta-analytic structural equation modeling. Educational Psychology Review, 33(3), 1097?1124. https://doi.org/10.1007/s10648-020-09554-w

Liu, M. (2023). Bayesian optimization and ensemble learning algorithm combined method for deformation prediction of concrete dam. Structures, 54, 981–993. https://doi.org/10.1016/j.istruc.2023.05.136

Lu, X., & Kaiser, G. (2022). Creativity in students’ modelling competencies: Conceptualisation and measurement. Educational Studies in Mathematics, 109(2), 287–311. https://doi.org/10.1007/s10649-021-10055-y

MacLeod, M., & Veen, J. T. V. D. (2020). Scaffolding interdisciplinary project-based learning: A case study. European Journal of Engineering Education, 45(3), 363–377. https://doi.org/10.1080/03043797.2019.1646210

Marbán, J. M., Radwan, E., Radwan, A., & Radwan, W. (2021). Primary and secondary students’ usage of digital platforms for mathematics learning during the COVID19 outbreak: The case of the Gaza strip. Mathematics, 9(2), Article 110. https://doi.org/10.3390/math9020110

Menggo, S., Pramesti, P. D. M. Y., & Krismayani, N. W. (2023). Integrating project-based learning in preparing students’ interpersonal communication skills on speaking courses in Indonesia. International Journal of Learning, Teaching and Educational Research, 22(9), 219–240. https://doi.org/10.26803/ijlter.22.9.12

Meyer, M. W., & Norman, D. (2020). Changing design education for the 21st century. The Journal of Design, Economics, and Innovation, 6(1), 13–49. https://doi.org/10.1016/j.sheji.2019.12.002

Michalsky, T. (2024). Metacognitive scaffolding for preservice teachers’ self-regulated design of higher order thinking tasks. Heliyon, 10(2), e2480. https://doi.org/10.1016/j.heliyon.2024.e24280

Moma, L. (2015). Pengambangan instrumen kemampuan berpikir kreatif matematis untuk siswa SMP [Development of mathematical creative thinking instruments for junior high school students]. Delta-Pi: Jurnal Matematika Dan Pendidikan Matematika, 4(1), 27–41. https://doi.org/10.33387/dpi.v4i1.142

Morteza, T., & Moghaddam, M. Y. (2017). On the plausibility of Bloom’s higher order thinking strategies on learner autonomy: The paradigm shift. Asian-Pacific Journal of Second and Foreign Language Education, 2, Article 14. https://doi.org/10.1186/s40862-017-0037-8

Munar, A., Winarti, W., Nai’mah, N., Rezieka, D. G., & Aulia, A. (2022). Improving higher order thinking skill (HOTs) in early children using picture story book. AL-ISHLAH: Jurnal Pendidikan, 14(3), 4611–4618. https://doi.org/10.35445/alishlah.v14i3.2224

Muttaqin, H., Susanto, Hobri, & Tohir, M. (2021). Students’ creative thinking skills in solving mathematics higher order thinking skills (HOTs) problems based on online trading arithmetic. Journal of Physics: Conference Series, 1832(1), Article 012036. https://doi.org/10.1088/1742-6596/1832/1/012036

Ndiung, S., Sariyasa, Jehadus, E., & Apsari, R. A. (2021). The effect of treffinger creative learning model with the use RME principles on creative thinking skill and mathematics learning outcome. International Journal of Instruction, 14(2), 873–888. https://doi.org/10.29333/iji.2021.14249a

Newton, K. J. (2020). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. Journal of Experimental Education, 88(4), 503–515. https://doi.org/10.1080/00220973.2019.1586629

Nizaruddin, N., & Kusmaryono, I. (2023). Transforming students’ pseudo-thinking into real thinking in mathematical problem solving. International Journal of Educational Methodology, 9(3), 477–491. https://doi.org/10.12973/ijem.9.3.477

Nuryadin, A., Karlimah, K., Lidinillah, D. A. M., & Apriani, I. F. (2023). Blended learning after the pandemic: The flipped classroom as an alternative learning model for elementary classrooms. Participatory Educational Research, 10(3), 209–225. https://doi.org/10.17275/per.23.52.10.3

OECD (Organisation for Economic Co-operation and Development). (2024). PISA results 2022 (Volume III) – Factsheets: Indonesia. OECD. https://www.oecd.org/en/publications/pisa-results-2022-volume-iii-factsheets_041a90f1-en/indonesia_a7090b49-en.html

Pakpahan, F. H., & Saragih, M. (2022). Theory of cognitive development by Jean Piaget. Journal of Applied Linguistics, 2(2), 55–60. https://doi.org/10.52622/joal.v2i2.79

Palinussa, A. L. (2013). Students’ critical mathematical thinking skills and character: Experiments for junior high school students through realistic mathematics education culture-based. Journal on Mathematics Education, 4(1), 75–94. https://doi.org/10.22342/jme.4.1.566.75-94

Piaget, J. (1936). Origins of intelligence in the child. Routledge & Kegan Paul.

PISA. (2023). PISA 2022 results (Volume I and II) – Country notes: Indonesia. https://www.oecd.org/en/publications/pisa-2022-results-volume-i-and-ii-country-notes_ed6fbcc5-en/indonesia_c2e1ae0e-en.html

Prastiti, T. D., Tresnaningsih, S., Mairing, J. P., & Azkarahman, A. R. (2020). HOTS problem on function and probability: Does it impact to students’ mathematical literacy in Universitas Terbuka? Journal of Physics: Conference Series, 1613(1), Article 012003. https://doi.org/10.1088/1742-6596/1613/1/012003

Puccio, G., Lohiser, A., & Seemiller, C. (2021). Understanding convergent thinking: Developing effective critical thinking. In Creative problem solving: A 21st century workplace skill. SAGE Publications. https://doi.org/10.4135/9781071865637

Purwaningsih, E., Sari, A. M., Yuliati, L., Masjkur, K., Kurniawan, B. R., & Zahiri, M. A. (2020). Improving the problem-solving skills through the development of teaching materials with STEM-PjBL (science, technology, engineering, and mathematics-project based learning) model integrated with TPACK (technological pedagogical content knowledge). Journal of Physics: Conference Series, 1481(1), Article 012133. https://doi.org/10.1088/1742-6596/1481/1/012133

Putri, N., Rusdiana, D., & Suwarma, I. R. (2020). Enhanching physics students’ creative thinking skills using CBL model implemented in STEM in vocational school. Journal of Physics: Conference Series, 1521, Article 042045. https://doi.org/10.1088/1742-6596/1521/4/042045

Rahman, M. S., Juniati, D., & Manuharawati, M. (2023). The quality of mathematical proficiency in solving geometry problem: Difference cognitive independence and motivation. Pegem Journal of Education and Instruction, 13(3), 255–266. https://doi.org/10.47750/pegegog.13.03.27

Rehman, N., Zhang, W., Mahmood, A., Fareed, M. Z., & Batool, S. (2023). Fostering twenty-first century skills among primary school students through math project-based learning. Humanities and Social Sciences Communications, 10(1), Article 424. https://doi.org/10.1057/s41599-023-01914-5

Roble, D. B., Lomibao, L. S., & Luna, C. A. (2021). Developing students’ creative constructs in mathematics with problem-based (PB) and problem posing (PP) tasks. Canadian Journal of Family and Youth, 13(2), 82–94. https://doi.org/10.29173/cjfy29672

Rosidin, U., Suyatna, A., & Abdurrahman, A. (2019). A combined HOTS-based assessment/STEM learning model to improve secondary students’ thinking skills: A development and evaluation study. Journal for the Education of Gifted Young Scientists, 7(3), 435–448. https://doi.org/10.17478/jegys.518464

Rusilowati, A., Negoro, R. A., Aji, A. P., & Subali, B. (2023). Development of waves critical thinking test: Physics essay test for high school student. European Journal of Educational Research, 12(4), 1781–1794. https://doi.org/10.12973/eu-jer.12.4.1781

Safie, N., & Zakaria, S. (2023). Examining the effectiveness of thinking maps usage by analysing students’ achievement in mathematics subject. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(1), 197–209. https://doi.org/10.37934/ARASET.31.1.197209

Sahudra, T. M., Ary, K. K., Ramadhani, D., Asnawi, A., & Handrianto, C. (2021). The impact of project-based flipped learning model on the technological pedagogical content knowledge skill of prospective teachers. Sustainability (Switzerland), 13(5), Article 2606. https://doi.org/10.3390/su13052606

Saldo, I. J. P., & Walag, A. M. P. (2020). Utilizing problem-based and project-based learning in developing students’ communication and collaboration skills in physics. American Journal of Educational Research, 8(5), 232–237. https://doi.org/10.12691/education-8-5-1

Samsudin, M. A., Jamali, S. M., Zain, A. N. M., & Ebrahim, N. A. (2020). The effect of STEM project based learning on self-efficacy among high-school physics students. Journal of Turkish Science Education, 17(1), 94–108. https://doi.org/10.36681/tused.2020.15

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303?324. https://doi.org/10.1007/s10649-020-09973-0

Schleicher, A. (2018). PISA 2018 insights and interpretations. OECD. Available at https://www.oecd.org/content/dam/oecd/en/about/programmes/edu/pisa/publications/national-reports/pisa-2018/PISA%202018%20Insights%20and%20Interpretations%20FINAL%20PDF.pdf

Serin, H. (2023). Teaching mathematics: The role of project-based learning. International Journal of Social Sciences & Educational Studies, 10(2), Article 28. https://doi.org/10.23918/ijsses.v10i2p378

Setianingsih, R., Sa’dijah, C., As’ari, A. R., & Muksar, M. (2017). Investigating fifth-grade students’ construction of mathematical knowledge through classroom discussion. International Electronic Journal of Mathematics Education, 12(4), 383–396. https://doi.org/10.29333/iejme/619

Shidqi, L., Trisniawati, T., & Rhosyida, N. (2023). The development of kobatar learning media for learning mathematics in elementary school. Advances in Mobile Learning Educational Research, 3(2), 886–892. https://doi.org/10.25082/amler.2023.02.015

Simonton, K. L. (2021). Project-based learning and its potential in physical education: An instructional model inquiry. Curriculum Studies in Health and Physical Education, 12(1), 36–52. https://doi.org/10.1080/25742981.2020.1862683

Sofiyan, S., Amalia, R., & Suwardi, A. B. (2020). Development of mathematical teaching materials based on project-based learning to improve students’ HOTS and character. Journal of Physics: Conference Series, 1460(1), Article 012006. https://doi.org/10.1088/1742-6596/1460/1/012006

Son, A. L., Darhim, D., & Fatimah, S. (2020). Students’ mathematical problem-solving ability based on teaching models intervention and cognitive style. Journal on Mathematics Education, 11(2), 209–222. https://doi.org/10.22342/jme.11.2.10744.209-222

Suanto, E., Maat, S. M., & Zakaria, E. (2023). The effectiveness of the implementation of three dimensions geometry KARA module on higher order thinking skills (HOTS) and motivation. International Journal of Instruction, 16(3), 95–116. https://doi.org/10.29333/iji.2023.1636a

Sukkeewan, P., Songkram, N., & Nasongkhla, J. (2024). Development and validation of a reliable and valid assessment tool for measuring innovative thinking in vocational students. International Journal of Educational Methodology, 10(1), 35–44. https://doi.org/10.12973/ijem.10.1.835

Suratno, S., Wahono, B., Chang, C. Y., Retnowati, A., & Yushardi, Y. (2020). Exploring a direct relationship between students’ problem-solving abilities and academic achievement: A STEM education at a coffee plantation area. Journal of Turkish Science Education, 17(2), 211–224. https://doi.org/10.36681/tused.2020.22

Syahriridani, M., Susilo, H., & Ibrohim, I. (2022). Developing problem based learning through lesson study. Journal of Learning Improvement and Lesson Study, 1(2), 15–22. https://doi.org/10.24036/jlils.v1i2.20

Syamsuddin, A., Juniati, D., & Siswono, T. Y. E. (2020). Understanding the problem solving strategy based on cognitive style as a tool to investigate reflective thinking process of prospective teacher. Universal Journal of Educational Research, 8(6), 2614?2620. https://doi.org/10.13189/ujer.2020.080644

Tamur, M., Ndiung, S., Nurjaman, A., & Jerito, P. (2020). Do differences in measured mathematical abilities moderate the effectiveness of the realistic mathematics education approach? Meta-analysis studies. Jurnal Math Educator Nusantara, 7(1), 13–26. https://doi.org/10.29407/jmen.v7i1.15736

Tanjung, H. S., Nababan, S. A., Sa’dijah, C., & Subanji, S. (2020). Development of assessment tools of critical thinking in mathematics in the context of HOTS. Advances in Mathematics: Scientific Journal, 9(10), 8659–8667. https://doi.org/10.37418/amsj.9.10.91

Tanujaya, B., Prahmana, R. C. I., & Mumu, J. (2021). Mathematics instruction to promote mathematics higher-order thinking skills of students in Indonesia: Moving forward. TEM Journal, 10(4), 1945–1954. https://doi.org/10.18421/TEM104-60

Vink, I. C. D., Hornstra, L., & Kroesbergen, E. H. (2023). Latent profile analysis of working memory: Relations with creativity and academic achievement. Creativity Research Journal, 1–17. https://doi.org/10.1080/10400419.2023.2183323

Wang, X. M. (2023). An online progressive peer assessment approach to project-based learning: A constructivist perspective. Educational Technology Research and Development, 71(5), 2073–2101. https://doi.org/10.1007/s11423-023-10257-6

Widiatsih, A., Wardani, D. A. R., Royhana, U., Djamali, F., & Septory, B. J. (2020). The development of mathematical problems based on higher order thinking skills (HOTS) on comparative material by implementing PBL and its effect on the teacher’s creative thinking skill. Journal of Physics: Conference Series, 1538(1), Article 012110. https://doi.org/10.1088/1742-6596/1538/1/012110

Widyaningsih, S. W., & Yusuf, I. (2019). The project-based learning model is based on simple teaching tools and critical thinking skills. Kasuari: Physics Education Journal (KPEJ), 1(1), 12–21. https://doi.org/10.37891/kpej.v1i1.33

Wijaya, T. T., Zhou, Y., Ware, A., & Hermita, N. (2021). Improving the creative thinking skills of the next generation of mathematics teachers using dynamic mathematics software. International Journal of Emerging Technologies in Learning, 16(13), 212–226. https://doi.org/10.3991/ijet.v16i13.21535

Zubaidah, S., Fuad, N. M., Mahanal, S., & Suarsini, E. (2017). Improving creative thinking skills of students through differentiated science inquiry integrated with a mind map. Journal of Turkish Science Education, 14(4), 77–91. https://doi.org/10.12973/tused.10214a

Zulyusri, Z., Elfira, I., Lufri, L., & Santosa, T. A. (2023). Literature study: Utilization of the PjBL model in science education to improve creativity and critical thinking skills. Jurnal Penelitian Pendidikan IPA, 9(1), 133–143. https://doi.org/10.29303/jppipa.v9i1.2555

  • There are currently no refbacks.

e-ISSN: 1694-2116

p-ISSN: 1694-2493

Watch CBS News

Teens come up with trigonometry proof for Pythagorean Theorem, a problem that stumped math world for centuries

By Bill Whitaker

Updated on: September 1, 2024 / 7:00 PM EDT / CBS News

This is an updated version of a story first published on May 5, 2024. The original video can be viewed  here . 

For many high school students returning to class this month, it may seem like geometry and trigonometry were created by the Greeks as a form of torture. 

So imagine our amazement when we heard two high school seniors had proved a mathematical puzzle that was thought to be impossible for two thousand years. 

We met Calcea Johnson and Ne'Kiya Jackson, at their all-girls Catholic high school in New Orleans. And, as we first reported this past spring, we expected to find two mathematical prodigies.  

Instead, we found at St. Mary's Academy , all students are told their possibilities are boundless.

Come Mardi Gras season, New Orleans is alive with colorful parades, replete with floats, and beads, and high school marching bands.

In a city where uniqueness is celebrated, St. Mary's stands out – with young African American women playing trombones and tubas, twirling batons and dancing - doing it all, which defines St. Mary's, students told us.

Junior Christina Blazio says the school instills in them they have the ability to accomplish anything. 

Christina Blazio: That is kinda a standard here. So we aim very high - like, our aim is excellence for all students. 

The private Catholic elementary and high school sits behind the Sisters of the Holy Family Convent in New Orleans East. The academy was started by an African American nun for young Black women just after the Civil War. The convent still supports the school with the help of alumni.

In December 2022, seniors Ne'Kiya Jackson and Calcea Johnson were working on a school-wide math contest that came with a cash prize.

Ne'Kiya Jackson and Calcea Johnson

Ne'Kiya Jackson: I was motivated because there was a monetary incentive.

Calcea Johnson: 'Cause I was like, "$500 is a lot of money. So I-- I would like to at least try."

Both were staring down the thorny bonus question.

Bill Whitaker: So tell me, what was this bonus question?

Calcea Johnson: It was to create a new proof of the Pythagorean Theorem. And it kind of gave you a few guidelines on how would you start a proof.

The seniors were familiar with the Pythagorean Theorem, a fundamental principle of geometry. You may remember it from high school: a² + b² = c². In plain English, when you know the length of two sides of a right triangle, you can figure out the length of the third.

Both had studied geometry and some trigonometry, and both told us math was not easy. What no one told  them  was there had been more than 300 documented proofs of the Pythagorean Theorem using algebra and geometry, but for 2,000 years a proof using trigonometry was thought to be impossible, … and that was the bonus question facing them.

Bill Whitaker: When you looked at the question did you think, "Boy, this is hard"?

Ne'Kiya Jackson: Yeah. 

Bill Whitaker: What motivated you to say, "Well, I'm going to try this"?

Calcea Johnson: I think I was like, "I started something. I need to finish it." 

Bill Whitaker: So you just kept on going.

Calcea Johnson: Yeah.

For two months that winter, they spent almost all their free time working on the proof.

CeCe Johnson: She was like, "Mom, this is a little bit too much."

CeCe and Cal Johnson are Calcea's parents.

CeCe Johnson:   So then I started looking at what she really was doing. And it was pages and pages and pages of, like, over 20 or 30 pages for this one problem.

Cal Johnson: Yeah, the garbage can was full of papers, which she would, you know, work out the problems and-- if that didn't work she would ball it up, throw it in the trash. 

Bill Whitaker: Did you look at the problem? 

Neliska Jackson is Ne'Kiya's mother.

Neliska Jackson: Personally I did not. 'Cause most of the time I don't understand what she's doing (laughter).

Michelle Blouin Williams: What if we did this, what if I write this? Does this help? ax² plus ….

Their math teacher, Michelle Blouin Williams, initiated the math contest.

Michelle Blouin Williams

Bill Whitaker: And did you think anyone would solve it?

Michelle Blouin Williams: Well, I wasn't necessarily looking for a solve. So, no, I didn't—

Bill Whitaker: What were you looking for?

Michelle Blouin Williams: I was just looking for some ingenuity, you know—

Calcea and Ne'Kiya delivered on that! They tried to explain their groundbreaking work to 60 Minutes. Calcea's proof is appropriately titled the Waffle Cone.

Calcea Johnson: So to start the proof, we start with just a regular right triangle where the angle in the corner is 90°. And the two angles are alpha and beta.

Bill Whitaker: Uh-huh

Calcea Johnson: So then what we do next is we draw a second congruent, which means they're equal in size. But then we start creating similar but smaller right triangles going in a pattern like this. And then it continues for infinity. And eventually it creates this larger waffle cone shape.

Calcea Johnson: Am I going a little too—

Bill Whitaker: You've been beyond me since the beginning. (laughter) 

Bill Whitaker: So how did you figure out the proof?

Ne'Kiya Jackson: Okay. So you have a right triangle, 90° angle, alpha and beta.

Bill Whitaker: Then what did you do?

Bill Whitaker with Calcea Johnson and Ne'Kiya Jackson

Ne'Kiya Jackson: Okay, I have a right triangle inside of the circle. And I have a perpendicular bisector at OP to divide the triangle to make that small right triangle. And that's basically what I used for the proof. That's the proof.

Bill Whitaker: That's what I call amazing.

Ne'Kiya Jackson: Well, thank you.

There had been one other documented proof of the theorem using trigonometry by mathematician Jason Zimba in 2009 – one in 2,000 years. Now it seems Ne'Kiya and Calcea have joined perhaps the most exclusive club in mathematics. 

Bill Whitaker: So you both independently came up with proof that only used trigonometry.

Ne'Kiya Jackson: Yes.

Bill Whitaker: So are you math geniuses?

Calcea Johnson: I think that's a stretch. 

Bill Whitaker: If not genius, you're really smart at math.

Ne'Kiya Jackson: Not at all. (laugh) 

To document Calcea and Ne'Kiya's work, math teachers at St. Mary's submitted their proofs to an American Mathematical Society conference in Atlanta in March 2023.

Ne'Kiya Jackson: Well, our teacher approached us and was like, "Hey, you might be able to actually present this," I was like, "Are you joking?" But she wasn't. So we went. I got up there. We presented and it went well, and it blew up.

Bill Whitaker: It blew up.

Calcea Johnson: Yeah. 

Ne'Kiya Jackson: It blew up.

Bill Whitaker: Yeah. What was the blowup like?

Calcea Johnson: Insane, unexpected, crazy, honestly.

It took millenia to prove, but just a minute for word of their accomplishment to go around the world. They got a write-up in South Korea and a shout-out from former first lady Michelle Obama, a commendation from the governor and keys to the city of New Orleans. 

Bill Whitaker: Why do you think so many people found what you did to be so impressive?

Ne'Kiya Jackson: Probably because we're African American, one. And we're also women. So I think-- oh, and our age. Of course our ages probably played a big part.

Bill Whitaker: So you think people were surprised that young African American women, could do such a thing?

Calcea Johnson: Yeah, definitely.

Ne'Kiya Jackson: I'd like to actually be celebrated for what it is. Like, it's a great mathematical achievement.

Achievement, that's a word you hear often around St. Mary's academy. Calcea and Ne'Kiya follow a long line of barrier-breaking graduates. 

The late queen of Creole cooking, Leah Chase , was an alum. so was the first African-American female New Orleans police chief, Michelle Woodfork …

And judge for the Fifth Circuit Court of Appeals, Dana Douglas. Math teacher Michelle Blouin Williams told us Calcea and Ne'Kiya are typical St. Mary's students.  

Bill Whitaker: They're not unicorns.

Michelle Blouin Williams: Oh, no no. If they are unicorns, then every single lady that has matriculated through this school is a beautiful, Black unicorn.

Pamela Rogers: You're good?

Pamela Rogers, St. Mary's president and interim principal, told us the students hear that message from the moment they walk in the door.

St. Mary's Academy president and interim principal Pamela Rogers

Pamela Rogers: We believe all students can succeed, all students can learn. It does not matter the environment that you live in. 

Bill Whitaker: So when word went out that two of your students had solved this almost impossible math problem, were they universally applauded?

Pamela Rogers: In this community, they were greatly applauded. Across the country, there were many naysayers.

Bill Whitaker: What were they saying?

Pamela Rogers: They were saying, "Oh, they could not have done it. African Americans don't have the brains to do it." Of course, we sheltered our girls from that. But we absolutely did not expect it to come in the volume that it came.  

Bill Whitaker: And after such a wonderful achievement.

Pamela Rogers: People-- have a vision of who can be successful. And-- to some people, it is not always an African American female. And to us, it's always an African American female.

Gloria Ladson-Billings: What we know is when teachers lay out some expectations that say, "You can do this," kids will work as hard as they can to do it.

Gloria Ladson-Billings, professor emeritus at the University of Wisconsin, has studied how best to teach African American students. She told us an encouraging teacher can change a life.

Bill Whitaker: And what's the difference, say, between having a teacher like that and a whole school dedicated to the excellence of these students?

Gloria Ladson-Billings: So a whole school is almost like being in Heaven. 

Bill Whitaker: What do you mean by that?

Bill Whitaker and Gloria Ladson-Billings

Gloria Ladson-Billings: Many of our young people have their ceilings lowered, that somewhere around fourth or fifth grade, their thoughts are, "I'm not going to be anything special." What I think is probably happening at St. Mary's is young women come in as, perhaps, ninth graders and are told, "Here's what we expect to happen. And here's how we're going to help you get there."

At St. Mary's, half the students get scholarships, subsidized by fundraising to defray the $8,000 a year tuition. Here, there's no test to get in, but expectations are high and rules are strict: no cellphones, modest skirts, hair must be its natural color.

Students Rayah Siddiq, Summer Forde, Carissa Washington, Tatum Williams and Christina Blazio told us they appreciate the rules and rigor.

Rayah Siddiq: Especially the standards that they set for us. They're very high. And I don't think that's ever going to change.

Bill Whitaker: So is there a heart, a philosophy, an essence to St. Mary's?

Summer Forde: The sisterhood—

Carissa Washington: Sisterhood.

Tatum Williams: Sisterhood.

Bill Whitaker: The sisterhood?

Voices: Yes.

Bill Whitaker: And you don't mean the nuns. You mean-- (laughter)

Christina Blazio: I mean, yeah. The community—

Bill Whitaker: So when you're here, there's just no question that you're going to go on to college.

Rayah Siddiq: College is all they talk about. (laughter) 

Pamela Rogers: … and Arizona State University (Cheering)

Principal Rogers announces to her 615 students the colleges where every senior has been accepted.

Bill Whitaker: So for 17 years, you've had a 100% graduation rate—

Pamela Rogers: Yes.

Bill Whitaker: --and a 100% college acceptance rate?

Pamela Rogers: That's correct.

Last year when Ne'Kiya and Calcea graduated, all their classmates went to college and got scholarships. Ne'Kiya got a full ride to the pharmacy school at Xavier University in New Orleans. Calcea, the class valedictorian, is studying environmental engineering at Louisiana State University.

Bill Whitaker: So wait a minute. Neither one of you is going to pursue a career in math?

Both: No. (laugh)

Calcea Johnson: I may take up a minor in math. But I don't want that to be my job job.

Ne'Kiya Jackson: Yeah. People might expect too much out of me if (laugh) I become a mathematician. (laugh)

But math is not completely in their rear-view mirrors. This spring they submitted their high school proofs for final peer review and publication … and are still working on further proofs of the Pythagorean Theorem. Since their first two …

Calcea Johnson: We found five. And then we found a general format that could potentially produce at least five additional proofs.

Bill Whitaker: And you're not math geniuses?

Bill Whitaker: I'm not buying it. (laughs)

Produced by Sara Kuzmarov. Associate producer, Mariah B. Campbell. Edited by Daniel J. Glucksman.

headshot-600-bill-whitaker2.jpg

Bill Whitaker is an award-winning journalist and 60 Minutes correspondent who has covered major news stories, domestically and across the globe, for more than four decades with CBS News.

More from CBS News

Creating a memorial to the horrors of World War I

11 killed as bus crashes into students, parents outside school in China

World's second tallest man forced to sleep on floor at Paralympics

2 elephants at Ohio zoo will welcome calves by the same father

IMAGES

  1. Math Problem Solving 101

    math problem solving for elementary

  2. Solving math problems anchor chart

    math problem solving for elementary

  3. Problem Solving Printable Worksheets

    math problem solving for elementary

  4. Math Problem Solving Posters [Video]

    math problem solving for elementary

  5. Problem Solving Worksheets Grade 1

    math problem solving for elementary

  6. math activity pages

    math problem solving for elementary

VIDEO

  1. Pythagoras and Polynomials

  2. Doing mental math at 3 years old? 😂#maths #math #mathematics #smartkids #shorts

  3. Magical Unicorn Freedom Trail

  4. Geometric Sequence Gaiety

  5. Factorial Farm!

  6. 10 Best Geometry Textbooks 2018

COMMENTS

  1. Math Problem Solving 101

    Team Work Counts. After going through the process with the class, we decided to split the students into small groups of 3 and 4 to solve a math problem together. The groups were expected to use the same process that we used to solve the problem. It took a while but check out one of the final products below.

  2. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  3. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  4. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  5. 1.1: Introduction to Problem Solving

    The very first Mathematical Practice is: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of ...

  6. PDF Problem Solving in Elementary Math

    Ask students to explain each step used to solve a problem in a worked example. Help students make sense of algebraic notation. The practice guide is available for free from IES and can be downloaded as a PDF file

  7. Problem Solving Strategies

    Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  8. 1.3: Problem Solving Strategies

    Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  9. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  10. Problem Solving Activities: 7 Strategies

    Getting the Most from Each of the Problem Solving Activities. When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking.

  11. 25 Fun Math Problems For Elementary And Middle School

    Middle school math games. 25 Fun Math Problems. Engage your elementary and middle school students with these fun math problems, suitable for individuals, pairs and small groups! Includes a range of challenge levels to engage all learners. Download Free Now!

  12. Teaching Problem-Solving in Math for Elementary Learners

    Teaching Problem-Solving in Math for Elementary Learners. Covid-19 has led to a massive increase in innovation in nearly every arena to help us all make it through the pandemic. Mathematical modeling has been important in forecasting Covid-19 trends, possible outcomes, and predicting the effects of measures to contain the virus.

  13. Problem Solving

    Developing excellence in problem solving with young learners Becoming confident and competent as a problem solver is a complex process that requires a range of skills and experience. In this article, Jennie suggests that we can support this process in three principal ways.

  14. Teaching Problem Solving in Math

    Then, I provided them with the "keys to success.". Step 1 - Understand the Problem. To help students understand the problem, I provided them with sample problems, and together we did five important things: read the problem carefully. restated the problem in our own words. crossed out unimportant information.

  15. How to Use Real-World Problems to Teach Elementary School Math: 6 Tips

    Here are some tips for using a real world problem-solving approach to teaching math to elementary school students. 1. There's more than one right answer and more than one right method. A "real ...

  16. Free Math Worksheets

    Our free math worksheets cover the full range of elementary school math skills from numbers and counting through fractions, decimals, word problems and more. All worksheets are printable files with answers on the 2nd page. Math worksheets by grade: Kindergarten Grade 4: Grade 1 Grade 5: Grade 2 Grade 6: Grade 3 . Math worksheets by topic:

  17. 3.1 Use a Problem-Solving Strategy

    Step 4. Translate into an equation. It may be helpful to restate the problem in one sentence with all the important information. Then, translate the English sentence into an algebraic equation. Step 5. Solve the equation using good algebra techniques. Step 6. Check the answer in the problem and make sure it makes sense. Step 7.

  18. 5 Ways to Include Problem Solving Activities

    Open-ended math problem solving tasks: promote multiple solution paths and/or multiple solutions. boost critical thinking and math reasoning skills. increase opportunities for developing perseverance. provide opportunities to justify answer choices. strengthen kids written and oral communication skills.

  19. Algebra I

    If this problem persists, tell us. Our mission is to provide a free, world-class education to anyone, anywhere. Khan Academy is a 501(c)(3) nonprofit organization. Donate or volunteer today! Site Navigation. About. News; Impact; Our team; Our interns; Our content specialists; Our leadership; Our supporters; Our contributors; Our finances;

  20. PDF Mathematical Problem Solving for Elementary School Teachers

    Learning mathematics is an active process. It is not possible to learn math-ematics by reading a textbook like a novel. Good mathematics students, from elementary school to graduate school, read a math book with pencil and paper in hand. Mathematics is not a collection of independent topics. It is not \Algebra I,"

  21. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  22. 29 Math Problem Solving IEP Goals (Including Math Reasoning)

    Math problem solving is a critical skill for students with learning disabilities that requires individualized support and attention. Effective math problem solving IEP goals are specific, measurable, and achievable, and are developed through collaboration with parents, teachers, and other stakeholders.; By setting realistic goals, monitoring progress, and adjusting goals as needed, educators ...

  23. 6: Factoring and Solving by Factoring

    This page titled 6: Factoring and Solving by Factoring is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform.

  24. Project-Based Learning in Fostering Creative Thinking and Mathematical

    The project-based learning model significantly impacted elementary school children's creative thinking and mathematics problem-solving skills. These findings suggest that the Project-Based Learning Model is acceptable for instructors seeking to foster creativity in teaching mathematics at the primary school level in Indonesia or other ...

  25. 9.2: Completing the Square

    We can use this technique to solve quadratic equations. The idea is to take any quadratic equation in standard form and complete the square so that we can solve it by extracting roots. The following are general steps for solving a quadratic equation with a leading coefficient of 1 in standard form by completing the square.

  26. Teens come up with trigonometry proof for Pythagorean Theorem, a

    A high school teacher didn't expect a solution when she set a 2,000-year-old Pythagorean Theorem problem in front of her students. Then Calcea Johnson and Ne'Kiya Jackson stepped up to the challenge.

  27. 4.5: Solving Systems of Linear Inequalities (Two Variables)

    Elementary Algebra (LibreTexts) 4: Solving Linear Systems 4.5: Solving Systems of Linear Inequalities (Two Variables) ... Therefore, to solve these systems, graph the solution sets of the inequalities on the same set of axes and determine where they intersect. This intersection, or overlap, defines the region of common ordered pair solutions. ...